Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 51-54    https://doi.org/10.11896/j.issn.1005-023X.2017.02.011
  材料研究 |
CrNi3MoVA钢表面电火花沉积NiCrAlY涂层的高速摩擦磨损性能*
杨君宝1, 王远超1, 曲家惠1, 郭秋萍2, 金浩1,3, 郭策安1, 张健1
1 沈阳理工大学装备工程学院, 沈阳 110159;
2 驻474军事代表室, 抚顺 113003;
3 沈阳工业大学材料科学与工程学院, 沈阳 110870;
High-speed Friction and Wear Performance of NiCrAlY Coating Electrospark Deposited on CrNi3MoVA Steel
YANG Junbao1, WANG Yuanchao1, QU Jiahui1, GUO Qiuping2, JIN Hao1,3,
GUO Cean1, ZHANG Jian1
1 School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159;
2 Department of Military Representatives in 474 Factory, Fushun 113003;
3 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870;
下载:  全 文 ( PDF ) ( 1548KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用电火花表面沉积技术,在CrNi3MoVA钢表面沉积NiCrAlY涂层。利用纳米压痕仪和摩擦磨损试验机分别测试了CrNi3MoVA钢和NiCrAlY涂层的硬度、弹性模量和摩擦系数,并用SEM和EDS研究了磨损前后的形貌和成分。结果表明电火花沉积NiCrAlY涂层包含β-NiAl和γ-Ni两相,涂层是由柱状晶组成的微晶涂层;NiCrAlY涂层的硬度较CrNi3MoVA钢提高了22%,而弹性模量较CrNi3MoVA钢降低了21%;当摩擦副为淬火G15钢球,加载量为10 N,往复行程为10 mm,往复速率为600 r/min时,CrNi3MoVA钢平稳摩擦系数为0.65~0.75,而NiCrAlY涂层平稳摩擦系数为0.45~0.55,CrNi3MoVA钢表面沉积NiCrAlY涂层对其具有明显的减摩耐磨作用,涂层表面较高的硬度和高速摩擦中形成的粘附力强的薄氧化物层是其耐磨的主要原因;CrNi3MoVA钢的磨损机制主要为粘着磨损,而NiCrAlY涂层为微切削磨料磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨君宝
王远超
曲家惠
郭秋萍
金浩
郭策安
张健
关键词:  CrNi3MoVA钢  NiCrAlY涂层  电火花沉积  高速摩擦磨损    
Abstract: A NiCrAlY coating was electrospark deposited on surface of a CrNi3MoVA steel. The hardness, elasticity modulus and friction coefficient of the CrNi3MoVA steel and NiCrAlY coating were tested by employing the nanoindentor and the friction and wear testing machine, respectively, and then morphologies and composition were investigated before and after wearing by utilizing scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrum (EDS). The results indicated that the NiCrAlY coating with columnar structure, composed of β-NiAl and γ-Ni, belongs to microcrystal one. The hardness of the NiCrAlY coating increased by 22% than the CrNi3MoVA steel whilst the elasticity modulus reduced by 21%; when the quenched G15 steel ball was used as the friction pair under the wear condition that the load was 10 N, the reciprocating travel was 10 millimeter and the velocity was 600 rounds per minute, the steady friction coefficient of the CrNi3MoVA steel was 0.65-0.75 while that of the NiCrAlY coa-ting was 0.45-0.55. Therefore the NiCrAlY coating electrospark deposited on the CrNi3MoVA steel has the function of antifriction and wear resistance mainly due to its higher hardness and good adherent thin surface oxide layer formed during high-speed friction; the mechanism of the CrNi3MoVA steel can be characterized as adhesive wear while that of the NiCrAlY coating is microcutting abrasive wear.
Key words:  CrNi3MoVA steel    NiCrAlY coating    electrospark deposition    high-speed friction and wear
               出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TB304  
  TB34  
基金资助: *辽宁省教育厅重点实验室基础研究项目(LZ2014013);沈阳理工大学辽宁省兵器科学与技术重点实验室开放基金(4771004kfs25)
作者简介:  杨君宝:男,1976年生,博士研究生,主要从事兵器新材料新工艺研究 E-mail:ligong6094@126.com 郭策安:通讯作者,男,1979年生,博士研究生,主要从事腐蚀、磨损与表面技术研究 E-mail:373055507@qq.com
引用本文:    
杨君宝, 王远超, 曲家惠, 郭秋萍, 金浩, 郭策安, 张健. CrNi3MoVA钢表面电火花沉积NiCrAlY涂层的高速摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(2): 51-54.
YANG Junbao, WANG Yuanchao, QU Jiahui, GUO Qiuping, JIN Hao,
GUO Cean, ZHANG Jian. High-speed Friction and Wear Performance of NiCrAlY Coating Electrospark Deposited on CrNi3MoVA Steel. Materials Reports, 2017, 31(2): 51-54.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.011  或          http://www.mater-rep.com/CN/Y2017/V31/I2/51
1 Wang Maoqiu, Dong Han, Wang Qi, et al. Microstructures and mechanical properties of high strength gun steels [J]. Ordnance Mater Sci Eng,2003,26(2):7(in Chinese).
王毛球,董瀚,王琪,等.高强度炮钢的组织和力学性能 [J].兵器材料科学与工程,2003,26(2):7.
2 Zhang Jian, Han Jilong, Guo Cean, et al. High temperature oxidation performance of multi-arc ion plated two TixAl1-xN films on gun steel [J]. J Funct Mater,2015,46(14):14107(in Chinese).
张健,韩继龙,郭策安,等.炮钢表面多弧离子镀两种TixAl1-xN薄膜的高温氧化性能 [J].功能材料,2015(14):14107.
3 Zhang Jian, Wang Yuanchao, et al. Isothermal oxidation behavior of electrospark deposited NiCrAlY coatings on gun steel at 850 ℃ [J]. J Northeastern University: Nat Sci,2014,35(S2):213(in Chinese).
张健,王远超,等.炮钢表面电火花沉积NiCrAlY涂层850 ℃恒温氧化行为[J].东北大学学报: 自然科学版,2014,35(S2):213.
4 Korkmaz K. Investigation and characterization of electrospark deposited chromium carbide-based coating on the steel [J]. Surf Coat Technol,2015,272:1.
5 Cao T, Lei S, Zhang M. The friction and wear behavior of Cu/Cu-MoS2 self-lubricating coating prepared by electrospark deposition [J]. Surf Coat Technol,2015,270:24.
6 Jamnapara N I, Frangini S, Alphonsa J, et al. Comparative analysis of insulating properties of plasma and thermally grown alumina films on electrospark aluminide coated 9Cr steels[J]. Surf Coat Technol,2015,266(3):146.
7 Burkov A A, et al. Formation of WC-Co coating by a novel technique of electrospark granules deposition [J]. Mater Des,2015,80:109.
8 Hong X, Tan Y F, Wang X L, et al. Effects of nitrogen flux on microstructure and tribological properties of in-situ TiN coatings depo-sited on TC11 titanium alloy by electrospark deposition [J]. Trans Nonferrous Met Soc China,2015,25(10):3329.
9 Wang X R, Wang Z Q, He P, et al. Microstructure and wear pro-perties of CuNiSiTiZr high-entropy alloy coatings on TC11 titanium alloy produced by electrospark computer numerical control deposition process [J]. Surf Coat Technol,2015,283:156.
10 Hong X, Tan Y, Zhou C, et al. Microstructure and tribological properties of Zr-based amorphous-nanocrystalline coatings deposited on the surface of titanium alloys by electrospark deposition [J]. Appl Surf Sci,2015,356:1244.
11 Liu Y, Wang D, Deng C, et al. Novel method to fabricate Ti-Al intermetallic compound coatings on Ti-6Al-4V alloy by combined ultrasonic impact treatment and electrospark deposition [J]. J Alloys Compd,2015,628:208.
12 Kudryashov A E, Potanin A Y, Lebedev D N, et al. Structure and properties of Cr-Al-Si-B coatings produced by pulsed electrospark deposition on a nickel alloy [J]. Surf Coat Technol,2015,285:278.
13 Luo P, Dong S, Yangli A, et al. Electrospark deposition of Al2O3-TiB2/Ni composite-phase surface coatings on Cu-Cr-Zr alloy electrodes [J]. J Asian Ceram Soc,2015,3(1):103.
14 Yang L, Chen M, Wang J, et al. A duplex nanocrystalline coating for high-temperature applications on single-crystal superalloy [J]. Corros Sci,2015,102:72.
15 Zhou S, Xiong Z, Lei J, et al. Influence of milling time on the microstructure evolution and oxidation behavior of NiCrAlY coatings by laser induction hybrid cladding [J]. Corros Sci,2016,103:105.
16 Guo C A, Wang W, Cheng Y, et al. Yttria partially stabilised zirconia as diffusion barrier between NiCrAlY and Ni-base single crystal René N5 superalloy [J]. Corros Sci,2015,94:122.
17 Guo Cean, Zhang Jian, Guo Qiuping, et al. High temperature oxidation behavior of sputtered NiCrAlY coatings on PCrNi3MoVA steel [J]. Trans Mater Heat Treat,2013,34(5):175(in Chinese).
郭策安,张健,郭秋萍,等.PCrNi3MoVA钢表面溅射NiCrAlY涂层的高温氧化行为[J].材料热处理学报,2013,34(5):175.
18 Wang R J, Qian Y Y, Liu J. Interface behavior study of WC92-Co8 coating produced by electrospark deposition [J]. Appl Surf Sci,2004,240(1):61.
19 Li W Z, Wang Q M, Bao Z B, et al. Microstructural evolution of the NiCrAlY/CrON duplex coating system and its influence on mechanical properties [J]. Mater Sci Eng A,2008,498:487.
20 Archard J F. Contact and rubbing of flat surfaces [J]. J Appl Phys,1953,24:981.
21 王振廷,孟君晟.摩擦磨损与耐磨材料[M].哈尔滨: 哈尔滨工业大学出版社,2013,47.
22 Li W L, Tao N R, Han Z. Comparisons of dry sliding tribological behaviors between coarse-grained and nanocrystalline copper [J]. Wear,2012,274-275:306.
23 Lou H Y, Wang F H, Xia B J, et al. High-temperature oxidation resistance of sputtered micro-grain superalloy K38G [J]. Oxid Met,1992,38(3-4):299.
[1] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[2] 郭策安, 周峰, 胡明, 赵博远, 金浩, 张健. CrNi3MoVA钢表面磁控溅射Ta涂层的摩擦磨损性能[J]. 材料导报, 2018, 32(18): 3213-3216.
[3] 杨君宝, 郭秋萍, 赵博远, 金浩, 郭策安, 张健. CrNi3MoVA钢表面电火花沉积W-Ni-Fe-Co涂层的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(12): 35-38.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed