Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2092-2097    https://doi.org/10.11896/cldb.20030110
  金属与金属基复合材料 |
6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能
刘敬萱1,2,3, 沈健1,3, 李锡武1,2,3, 闫丽珍1,2,3, 闫宏伟1,2, 刘宏伟1,2, 温凯1,2, 李亚楠1,2
1 有研科技集团有限公司有色金属材料制备加工国家重点实验室,北京 100088;
2 有研工程技术研究院有限公司,北京 101407;
3 北京有色金属研究总院,北京 100088
Microstructure and Fatigue Properties of Friction Stir Welded 6005A-T5 Aluminum Alloy
LIU Jingxuan1,2,3, SHEN Jian1,3, LI Xiwu1,2,3, YAN Lizhen1,2,3, YAN Hongwei1,2, LIU Hongwei1,2, WEN Kai1,2,
LI Yanan1,2
1 State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., LTD., Beijing 100088, China;
2 GRIMAT Engineering Institute Co., LTD., Beijing 101407, China;
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
下载:  全 文 ( PDF ) ( 7508KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本工作借助金相(OM)、电子背散射衍射(EBSD)、透射电子显微镜(TEM)、硬度和高周疲劳试验,研究不同焊接参数对6005A-T5铝合金搅拌摩擦焊(FSW)接头的显微组织与疲劳性能的影响。结果表明,焊接过程中焊核区(NZ)发生了动态再结晶,形成了尺寸细小的等轴晶粒,合金中的沉淀相发生回溶,NZ只存在尺寸细小、分布离散的GP区。热影响区(HAZ)晶粒形态和尺寸与母材基本相似,存在两种形态的沉淀相(β′相和Q′相)。搅拌头转速越大或焊接速度越小,均会提高相应的焊接热输入,过高的焊接热输入会降低FSW接头在107循环周次下的疲劳强度。疲劳裂纹均在试样表面萌生,疲劳裂纹扩展初期为沿晶扩展,然后逐渐转变为穿晶扩展,断口形貌呈现解理断裂,最终失稳断裂转变为韧性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘敬萱
沈健
李锡武
闫丽珍
闫宏伟
刘宏伟
温凯
李亚楠
关键词:  6005A-T5铝合金  搅拌摩擦焊  组织  显微硬度  疲劳    
Abstract: The effects of different welding parameters on microstructure and fatigue properties of 6005A-T5 aluminum alloy friction stir welding (FSW) joints were studied by optical microscopy (OM), electron backscattered diffraction (EBSD), transmission electron microscope (TEM), Vickers hardness, and high cycle fatigue tests. The results showed that dynamic recrystallization occurred in the nugget zone (NZ) during the welding process, resulting in the formation of fine equiaxed grains, and the precipitation phases dissolve back into the Al-matrix. The grain morphology and size in the heat affected zone (HAZ) are similar to that of the base material, and there are two kinds of precipitation phases (β′ phase and Q′ phase). The higher the rotating speed or the lower the welding speed of the tool means the higher welding heat input, which will reduce the fatigue strength of FSW joint under 107 cycles. All the fatigue cracks were initiated on the surface of the samples. At the initial stage of fatigue crack propagation, the crack propagates along the grain boundary. As the crack continued to expand, it gradually turned into transgranular expansion, and the fracture morphology showed cleavage fracture, and finally the instability fracture turned into ductile fracture.
Key words:  6005A-T5 aluminum alloy    friction stir welding    microstructure    microhardness    fatigue
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TG457.1  
基金资助: 国家重点研发计划(2016YFB0300902;2016YFB0300905)
通讯作者:  jshen@grinm.com   
作者简介:  刘敬萱,2016年6月毕业于江西理工大学,获得工学硕士学位。现为北京有色金属研究总院博士研究生,目前主要从事轨道交通铝合金焊接方面的研究工作。
沈健,博士,北京有色金属研究总院教授,博士研究生导师。主要从事高强钛合金材料制备、新型Al-Li合金材料研制、高强高韧铝合金热轧组织控制与预测、旋压工艺与技术等方面的研究工作。在国内外重点学术刊物和学术会议上发表学术论文近80篇,多篇论文被SCI、EI等收录。获省部级科技进步一等奖1项、二等奖4项、三等奖2项。
引用本文:    
刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
LIU Jingxuan, SHEN Jian, LI Xiwu, YAN Lizhen, YAN Hongwei, LIU Hongwei, WEN Kai, LI Yanan. Microstructure and Fatigue Properties of Friction Stir Welded 6005A-T5 Aluminum Alloy. Materials Reports, 2021, 35(2): 2092-2097.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030110  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2092
1 Edwards G A, Stiller K, Dunlop G L, et al. Acta Materialia, 1998, 46(11), 3893.
2 Williams J C, Jr E A S. Acta Materialia, 2003, 51(19), 5775.
3 Pogatscher S, Antrekowitsch H, Leitner H, et al. Acta Materialia, 2011. 59(9), 3352.
4 Miller W S, Zhuang L, Bottema J, et al. Materials Science and Enginee-ring: A, 2000. 280(1), 37.
5 Dong P, Sun D, Li H, et al. Materials Science and Engineering: A, 2013, 576, 29.
6 Yan Z, Liu X, Fang H. The International Journal of Advanced Manufacturing Technology, 2017,91(9), 3025.
7 Wang Y H, Wang K S, Wang W, et al.Journal of Materials Enginee-ring, 2019,47(11), 155(in Chinese).
王盈辉, 王快社, 王文, 等. 材料工程, 2019, 47(11), 155.
8 Gou G, Zhang M, Chen H, et al. Materials & Design, 2015,85, 309.
9 Wang X, Mao S, Chen P, et al. Materials & Design, 2016,90, 230.
10 Liu H, Zhao Y, Hu Y, et al.The International Journal of Advanced Ma-nufacturing Technology, 2015,78(9):1415.
11 Borrego L P, Costa J S, Jesus J S, et al.Theoretical and Applied Fracture Mechanics, 2014, 70, 68.
12 Mishra R S, Ma Z Y. Materials Science and Engineering: R: Reports, 2005,50(1), 1.
13 Nandan R, Debroy T, Bhadeshia H K D H. Progress in Materials Science, 2008,53(6), 980.
14 Di S, Yang X, Luan G, et al. Materials Science and Engineering: A, 2006,435-436, 389.
15 Okada T, Suzuki M, Miyake H, et al. The International Journal of Advanced Manufacturing Technology, 2010,50(1), 127.
16 Uematsu Y, Tozaki Y, Tokaji K, et al. Strength of Materials, 2008,40(1), 138.
17 Deng C, Wang H, Gong B, et al. International Journal of Fatigue, 2016,83, 100.
18 Dai Q, Liang Z, Chen G, et al. Materials Science and Engineering: A, 2013,580, 184.
19 Dong P, Liu Z, Zhai X, et al. International Journal of Fatigue, 2019,124, 15.
20 Gong B S, Liu Z J, Wang Y L, et al. Materials Science and Engineering: A, 2019,742, 15.
21 Yin D, Liu H, Chen Y, et al. International Journal of Fatigue, 2016,84, 9.
22 Ma Y E, Xia Z C, Jiang R R, et al. Engineering Fracture Mechanics, 2013,114, 1.
23 Yan D J,Liu X S,Fang H Y,et al. The Chinese Journal of Nonferrous Metals, 2012(12), 3313(in Chinese).
闫德俊,刘雪松,方洪渊,等.中国有色金属学报, 2012 (12), 3313.
24 Fratini L, Pasta S, Reynolds A. International Journal of Fatigue, 2009,31(3), 495.
25 Bussu G, Irving P E. International Journal of Fatigue, 2003,25(1), 77.
26 McNelley T R, Swaminathan S, Su J Q. Scripta Materialia, 2008,58(5), 349.
27 Yang W, Wang M, Jia Y, et al. Metallurgical and Materials Transactions A, 2011,42(9), 2917.
28 Andersen S J, Zandbergen H W, Jansen J, et al. Acta Materialia, 1998,46(9), 3283.
29 Gaber A, Ali A M, Matsuda K, et al. Journal of Alloys and Compounds, 2007,432(1), 149.
30 Dong P, Li H, Sun D, et al. Materials & Design, 2013,45, 524.
31 Ding L, Jia Z, Nie J, et al. Acta Materialia, 2018,145, 437.
32 Besel M, Besel Y, Alfaro Mercado U, et al. International Journal of Fatigue, 2015,77, 1.
33 He B L, Feng Y M, Li L. The Chinese Journal of Nonferrous Metals, 2019, 29(7), 1377(in Chinese).
何柏林, 封亚明, 李力. 中国有色金属学报, 2019, 29 (7), 1377.
[1] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[2] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[3] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[4] 樊光娆, 苏海军, 郭敏, 张军, 高嘉亮, 郝宣成, 宋强, 刘林, 傅恒志. 生物陶瓷支架促进再生组织血管生成和骨生成的研究进展[J]. 材料导报, 2021, 35(1): 1096-1104.
[5] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[6] 唐延川, 许举文, 崔泽云, 王文慧, 张欣磊, 唐兴昌, 赵龙志. Cu-Be/Cu-Zn层状金属基复合材料的冷轧变形行为及界面过渡层演变[J]. 材料导报, 2021, 35(1): 1177-1182.
[7] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[8] 庄唯, 王耀勉, 杨换平, 剡文斌. 钛合金渗碳处理研究进展[J]. 材料导报, 2020, 34(Z2): 344-347.
[9] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[10] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[11] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[12] 屈少杰, 李成军, 汤志强, 李斌东, 熊刚. TiZr3V6合金微观组织及吸氢物相转变[J]. 材料导报, 2020, 34(Z2): 360-361.
[13] 路建宁, 王娟, 林颖菲, 郑开宏, 王海艳. 表面氧化处理对SiC/A356 Al复合材料组织及性能的影响[J]. 材料导报, 2020, 34(Z2): 381-385.
[14] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[15] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed