Microstructure and Fatigue Properties of Friction Stir Welded 6005A-T5 Aluminum Alloy
LIU Jingxuan1,2,3, SHEN Jian1,3, LI Xiwu1,2,3, YAN Lizhen1,2,3, YAN Hongwei1,2, LIU Hongwei1,2, WEN Kai1,2, LI Yanan1,2
1 State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., LTD., Beijing 100088, China; 2 GRIMAT Engineering Institute Co., LTD., Beijing 101407, China; 3 General Research Institute for Nonferrous Metals, Beijing 100088, China
Abstract: The effects of different welding parameters on microstructure and fatigue properties of 6005A-T5 aluminum alloy friction stir welding (FSW) joints were studied by optical microscopy (OM), electron backscattered diffraction (EBSD), transmission electron microscope (TEM), Vickers hardness, and high cycle fatigue tests. The results showed that dynamic recrystallization occurred in the nugget zone (NZ) during the welding process, resulting in the formation of fine equiaxed grains, and the precipitation phases dissolve back into the Al-matrix. The grain morphology and size in the heat affected zone (HAZ) are similar to that of the base material, and there are two kinds of precipitation phases (β′ phase and Q′ phase). The higher the rotating speed or the lower the welding speed of the tool means the higher welding heat input, which will reduce the fatigue strength of FSW joint under 107 cycles. All the fatigue cracks were initiated on the surface of the samples. At the initial stage of fatigue crack propagation, the crack propagates along the grain boundary. As the crack continued to expand, it gradually turned into transgranular expansion, and the fracture morphology showed cleavage fracture, and finally the instability fracture turned into ductile fracture.
1 Edwards G A, Stiller K, Dunlop G L, et al. Acta Materialia, 1998, 46(11), 3893. 2 Williams J C, Jr E A S. Acta Materialia, 2003, 51(19), 5775. 3 Pogatscher S, Antrekowitsch H, Leitner H, et al. Acta Materialia, 2011. 59(9), 3352. 4 Miller W S, Zhuang L, Bottema J, et al. Materials Science and Enginee-ring: A, 2000. 280(1), 37. 5 Dong P, Sun D, Li H, et al. Materials Science and Engineering: A, 2013, 576, 29. 6 Yan Z, Liu X, Fang H. The International Journal of Advanced Manufacturing Technology, 2017,91(9), 3025. 7 Wang Y H, Wang K S, Wang W, et al.Journal of Materials Enginee-ring, 2019,47(11), 155(in Chinese). 王盈辉, 王快社, 王文, 等. 材料工程, 2019, 47(11), 155. 8 Gou G, Zhang M, Chen H, et al. Materials & Design, 2015,85, 309. 9 Wang X, Mao S, Chen P, et al. Materials & Design, 2016,90, 230. 10 Liu H, Zhao Y, Hu Y, et al.The International Journal of Advanced Ma-nufacturing Technology, 2015,78(9):1415. 11 Borrego L P, Costa J S, Jesus J S, et al.Theoretical and Applied Fracture Mechanics, 2014, 70, 68. 12 Mishra R S, Ma Z Y. Materials Science and Engineering: R: Reports, 2005,50(1), 1. 13 Nandan R, Debroy T, Bhadeshia H K D H. Progress in Materials Science, 2008,53(6), 980. 14 Di S, Yang X, Luan G, et al. Materials Science and Engineering: A, 2006,435-436, 389. 15 Okada T, Suzuki M, Miyake H, et al. The International Journal of Advanced Manufacturing Technology, 2010,50(1), 127. 16 Uematsu Y, Tozaki Y, Tokaji K, et al. Strength of Materials, 2008,40(1), 138. 17 Deng C, Wang H, Gong B, et al. International Journal of Fatigue, 2016,83, 100. 18 Dai Q, Liang Z, Chen G, et al. Materials Science and Engineering: A, 2013,580, 184. 19 Dong P, Liu Z, Zhai X, et al. International Journal of Fatigue, 2019,124, 15. 20 Gong B S, Liu Z J, Wang Y L, et al. Materials Science and Engineering: A, 2019,742, 15. 21 Yin D, Liu H, Chen Y, et al. International Journal of Fatigue, 2016,84, 9. 22 Ma Y E, Xia Z C, Jiang R R, et al. Engineering Fracture Mechanics, 2013,114, 1. 23 Yan D J,Liu X S,Fang H Y,et al. The Chinese Journal of Nonferrous Metals, 2012(12), 3313(in Chinese). 闫德俊,刘雪松,方洪渊,等.中国有色金属学报, 2012 (12), 3313. 24 Fratini L, Pasta S, Reynolds A. International Journal of Fatigue, 2009,31(3), 495. 25 Bussu G, Irving P E. International Journal of Fatigue, 2003,25(1), 77. 26 McNelley T R, Swaminathan S, Su J Q. Scripta Materialia, 2008,58(5), 349. 27 Yang W, Wang M, Jia Y, et al. Metallurgical and Materials Transactions A, 2011,42(9), 2917. 28 Andersen S J, Zandbergen H W, Jansen J, et al. Acta Materialia, 1998,46(9), 3283. 29 Gaber A, Ali A M, Matsuda K, et al. Journal of Alloys and Compounds, 2007,432(1), 149. 30 Dong P, Li H, Sun D, et al. Materials & Design, 2013,45, 524. 31 Ding L, Jia Z, Nie J, et al. Acta Materialia, 2018,145, 437. 32 Besel M, Besel Y, Alfaro Mercado U, et al. International Journal of Fatigue, 2015,77, 1. 33 He B L, Feng Y M, Li L. The Chinese Journal of Nonferrous Metals, 2019, 29(7), 1377(in Chinese). 何柏林, 封亚明, 李力. 中国有色金属学报, 2019, 29 (7), 1377.