Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17090-17102    https://doi.org/10.11896/cldb.20080091
  材料与可持续发展(四)———材料再制造与废弃物料资源化利用* |
工业固废和廉价矿石制备高循环稳定性高温CO2捕集材料的研究进展
范文琦1, 潘登2, 黄亮1, 王强1
1 北京林业大学环境科学与工程学院,北京 100083
2 武汉凯迪水务有限公司,武汉 430000
Research Progress in the Preparation of High Cycling Stability and High Temperature CO2 Capture Materials from Industrial Solid Waste and Cheap Ore
FAN Wenqi1, PAN Deng2, HUANG Liang1, WANG Qiang1
1 College of Environmental Science and Engineering, Beijing Forestry University,Beijing 100083, China
2 Wuhan Kaidi Water Service Co., Ltd., Wuhan 430000, China
下载:  全 文 ( PDF ) ( 6458KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 全球范围已就“2 ℃气候红线”达成共识。为缓解气候变暖,同时满足经济发展的能源需求,CO2大规模减排技术受到了广泛关注。其中,CO2捕集、利用与封存(CCUS)技术被认为是实现减排的最理想途径。而无论对于CO2的利用还是封存,CO2捕集都是必要的前提。近年来,空气中CO2的捕集开始逐渐受到关注,但从源头控制出发,工业源的CO2捕集仍是减排的重点所在。目前工业应用的CO2捕集技术——胺洗涤仍存在成本高且产物具有环境毒性等问题。与之相比,固体CO2捕集材料在生产、运输、应用上都具有独特的优势,鉴于工业CO2普遍温度较高,越来越多的研究致力于固体高温CO2吸附剂的构建。
目前,固体材料高温CO2捕集已进入中试阶段。为实现工业化应用,吸附材料的成本、吸附性能和循环稳定性都受到重点关注。常规的高温CO2吸附材料CaO、Li4SiO4都存在多次循环后易发生烧结而导致吸附性能下降的问题,虽然可以通过改进合成方法、元素掺杂、表面修饰等手段对其进行改性,但这无疑会造成成本的增加。对此,许多研究者开始利用工业固体废弃物或廉价矿石合成高温CO2吸附剂。大量研究结果表明,使用天然/废弃原料不仅可以降低吸附剂的生产成本,还可以实现固体废弃物的资源化,原料中的部分杂质组分还对吸附剂的抗烧结性能有着重要的促进作用,这对固体高温CO2吸附剂的实际应用有着重要的价值。
基于天然/废弃原料合成高温CO2吸附剂的良好应用前景,为助力廉价高效CO2吸附剂的研发,本文综述了近十年来以工业固体废弃物和廉价矿石为原料制备CaO基和Li4SiO4基两种高温CO2吸附剂的研究进展;分别介绍了制备高温吸附剂的各类前驱体及改性材料,如矿石(石灰石、白云石、高岭土、硅藻土、蛭石、方解石、埃洛石、铝土矿尾矿等)、生物质(蛋壳、贝壳、微生物、谷稻壳等)、水泥建筑工业废弃物(粉煤灰、电石渣、钢渣、铝酸钙水泥、造纸白泥、建筑废料、水泥生料、废弃大理石粉末等)等;整理了材料的合成及改性方法,如掺杂改性、酸浸、水洗、干燥、煅烧、造粒等预处理手段;综合对比了材料在不同条件下的吸附性能及吸-脱附循环稳定性,如不同温度或不同CO2浓度下材料的性能变化;并讨论了其可能的优化机理,如表面孔径的优化,造粒耐磨损、耐烧结骨架的生成及离子的均衡扩散等;总结了各类材料存在的优点与不足,如CaO基材料来源广泛、成本低廉,但存在因循环煅烧而导致的吸附性能下降问题,Li4SiO4基材料具有较快的吸-脱附速率,但循环稳定性较差且受CO2浓度影响大的问题有待解决。希望本文不仅能帮助研究者快速了解该领域的研究现状,还能为其后续的研究工作提供有价值的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范文琦
潘登
黄亮
王强
关键词:  高温CO2捕集材料  矿石  工业固体废物  吸-脱附循环  氧化钙  硅酸锂    
Abstract: Aglobal consensus has been reached on the “2 ℃ climate red line”. In order to mitigate climate warming and meet the energy needs of economic development, CO2 emission reduction technologies have attracted wide attention. Among them, CO2 capture, utilization and storage (CCUS) technology is considered as the most ideal way to achieve emission reduction. CO2 capture is a necessary prerequisite for both utilization and storage of CO2. In recent years, air CO2 capture has been gradually concerned, but from the perspective of source control, CO2 capture from industrial sources is still the focus of emission reduction. At present, the industrial application of CO2 capture technology amine washing still has the problems of high cost and environmental toxicity. In contrast, solid CO2 capture materials have unique advantages in production, transportation and application. In view of the generally high temperature of industrial CO2, more and more researches are devoted to the construction of solid high-temperature CO2 adsorbents.
At present, the high temperature CO2 capture of solid materials has entered the pilot-scale. In order to realize industrial application, the cost, adsorption performance and cycling stability of adsorptive materials have been paid much attention. Conventional high temperature CO2 adsorption materials, CaO and Li4SiO4, are prone to sintering after multiple cycles, resulting in a decline in adsorption performance. Although they can be modified by improving the synthesis method, element doping, surface modification and other means, there is no doubt that this will cause an increase in cost. In response, many researchers have begun to synthesize high-temperature CO2 adsorbents from industrial solid waste or cheap ore. A large number of research results show that the use of natural/waste raw materials can not only reduce the production cost of the adsorbent and realize the recycling of solid waste, but also some of the impurities in the raw materials have an important role in promoting the anti-sintering performance of the adsorbent, which is of great value for the practical application of solid high-temperature CO2 adsorbent.
Based on the good application prospect of high temperature CO2 adsorbents synthesized from natural/waste raw materials, in order to facilitate the research and development of low cost and high efficiency CO2 adsorbents, this paper summarizes the research progress of the preparation of CaO and Li4SiO4 based high temperature CO2 adsorbents from industrial solid waste and cheap ore in the recent ten years. All kinds of precursors and modified materials are sorted out respectively, mainly include all kinds of ores (limestone, dolomite, kaolin, diatomite, vermiculite calcite, etc.), biomass (shell, shell, microorganism, valley, rice husk, etc.), cement building industrial waste (fly ash, calcium carbide slag, steel slag, calcium aluminate cement, papermaking white clay, construction waste, cement raw meal, waste marble powder, etc.), etc.; the synthesis conditions and modification methods of the materials are listed, such as doping modification, acid leaching, water washing, drying and calcination. Compared with CO2 adsorption conditions and properties based on constant cycle times and adsorption amount. The possible mechanisms, such as the optimization of surface aperture, the formation of pellet wear resistance, sintering resistance skeleton and the equilibrium diffusion of ions, are integrated. The advantages and disadvantages of all kinds of materials are summarized. For example, CaO based materials have wide sources and low cost, but there is a problem of degradation of adsorption performance caused by sintering due to cyclic calcination. Li4SiO4 based materials have a faster rate of absorption and desorption, but the problem of poor cycling stability and large influence by CO2 concentration remains to be solved. We hope that this paper can not only help researchers quickly understand the research status in this field, but also provide meaningful suggestions for their subsequent research work, so as to promote the industrial application of solid high-temperature CO2 adsorbent.
Key words:  high temperature CO2 capture material    ore    industrial solid waste    adsorption-desorption cycle    calcium oxide    lithium silicate
                    发布日期:  2021-09-26
ZTFLH:  X75  
基金资助: 中央高校基本科研业务费专项资金(2019JQ03015);国家自然科学基金(U1810209);兵团国际科技合作计划(2018BC002);北京高校高精尖学科建设项目“生态修复工程学”
通讯作者:  qiangwang@bjfu.edu.cn   
作者简介:  范文琦,2019年6月毕业于北京林业大学,获得工学学士学位。现为北京林业大学环境科学与工程学院硕士研究生,在王强教授的指导下进行研究,目前主要研究领域为碱金属钛酸盐高温CO2吸附材料。
王强,北京林业大学环境科学与工程学院副院长、教授、博士研究生导师。于2003年和2005年在哈尔滨工业大学获得学士和硕士学位,2009年在韩国浦项工业大学获得博士学位,2009—2011年在新加坡科研局化学与工程科学研究院任研究员,2011—2012年在英国牛津大学作博士后,2012年进入北京林业大学环境科学与工程学院工作。入选国家自然科学基金优秀青年基金项目、教育部“新世纪优秀人才支持计划”、第一批国家环境保护专业技术青年拔尖人才、第七批“北京市优秀青年人才”、北京市青年拔尖人才、北京市科技新星、北京林业大学“杰出青年人才培养计划”等。受聘SCI期刊Journal of Energy Chemistry责任编辑、Science of Advanced Materials副主编、Catalysts编委、Reaction Chemistry & EngineeringFrontiers in Chemistry客座编辑。已在Chem. Rev.Energy Environ. Sci.Appl. Catal. B: Environ.等发表SCI论文190余篇。主持项目10余项,获授权国际专利4项、国内专利7项。主编英文专著3部,撰写英文专著章节4个。主要研究方向包括:(1)二氧化碳捕集与利用;(2)烟气脱硝催化剂研发;(3)挥发性有机污染物吸附/催化材料研发。
引用本文:    
范文琦, 潘登, 黄亮, 王强. 工业固废和廉价矿石制备高循环稳定性高温CO2捕集材料的研究进展[J]. 材料导报, 2021, 35(17): 17090-17102.
FAN Wenqi, PAN Deng, HUANG Liang, WANG Qiang. Research Progress in the Preparation of High Cycling Stability and High Temperature CO2 Capture Materials from Industrial Solid Waste and Cheap Ore. Materials Reports, 2021, 35(17): 17090-17102.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080091  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17090
1 Creamer A E, Gao B. Environmental Science & Technology, 2016, 50(14), 7276.
2 Bian W J, Dong G. Inner Mongolia Coal Economy, 2019(6), 16(in Chinese).
边文娟, 董乾. 内蒙古煤炭经济, 2019(6), 16.
3 Balasubramanian R, Chowdhury S. Journal of Materials Chemistry A, 2015, 3(44), 21968.
4 Pan S Y, Chang E E, Chiang P C. Aerosol and Air Quality Research, 2012, 12(5), 770.
5 Perejón A, Romeo L M, Lara Y, et al. Applied Energy,2016,162,787.
6 Gouedard C, Picq D, Launay F, et al. International Journal of Greenhouse Gas Control, 2012, 10, 244.
7 Wang J, Yang Y, Jia Q, et al. ChemSusChem, 2019, 12(10), 2055.
8 Wu Y J, Li P, Yu J G, et al. Reviews in Chemical Engineering, 2016,32(3),271.
9 Valverde J M, Sanchez-Jimenez P E, Perez-Maqueda L A. Applied Energy, 2015, 138, 202.
10 Mondal M K, Balsora H K, Varshney P. Energy, 2012, 46(1), 431.
11 Figueroa J D, Fout T, Plasynski S, et al. International Journal of Greenhouse Gas Control, 2008, 2(1), 9.
12 Fan L S, Zeng L, Wang W, et al. Energy & Environmental Science, 2012, 5(6).
13 Hao P J, Wijmans J G, Kniep J, et al. Journal of Membrane Science, 2014, 462, 131.
14 Chao C, Zhang S, Row K H, et al. Journal of Energy Chemistry, 2017, 26(5), 868.
15 Qiang W, Hui H T, Chen L, et al. Journal of Nanoengineering & Nanomanufacturing, 2011, 1, 298.
16 Wang J, Manovic V, Wu Y, et al. Applied Energy, 2010, 87(4), 1453.
17 Zhang Y. Effect of different silicon sources on properties of Li4SiO4 high temperature CO2 adsorbent. Master’s Thesis, Beijing Forestry University, China, 2019(in Chinese).
张玉. 不同硅源对Li4SiO4高温CO2吸附剂性能影响的研究. 硕士学位论文, 北京林业大学, 2019.
18 Brickett L, Munson R, Litynski J. Fuel, 2020, 268,117169.
19 Chang M H, Chen W C, Huang C M, et al. Energy Procedia, 2014, 63, 2100.
20 Diego M E, Arias B. Fuel Processing Technology, 2020, 200, 106307.
21 Martin H, Jochen H, Martin H, et al. International Journal of Greenhouse Gas Control, 2018, 75, 224.
22 Witoon T. Ceramics International, 2011, 37(8), 3291.
23 Manovic V. Environmental Science & Technology, 2009, 43(18), 7117.
24 Huang L, Xu C, Ren R, et al. Sustainable Energy & Fuels, 2018, 2(1), 68.
25 Armutlulu A, Naeem M A, Liu H J, et al. Advanced Materials, 2017, 29(41),1702896.
26 Broda M, Kierzkowska A M, Müller C R. Advanced Functional Mate-rials, 2014, 24(36), 5753.
27 Huang L. Modification of CaO base high temperature CO2 adsorbent and its promoting mechanism. Ph.D. Thesis, Beijing Forestry University, China, 2019(in Chinese).
黄亮. CaO基高温CO2吸附材料的改性及其促进机理研究. 博士学位论文, 北京林业大学, 2019.
28 Kierzkowska A M, Pacciani R, Muller C R. ChemSusChem, 2013, 6(7), 1130.
29 Fennell P S, Pacciani R, Dennis J S, et al. Energy & Fuels, 2007, 21(4), 2072.
30 Manovic V, Anthony E J. Energy & Fuels, 2008, 22(3), 1851.
31 Li Y, Zhao C, Chen H, et al. Fuel, 2009, 88(4), 697.
32 Manovic V, Anthony E J. Industrial & Engineering Chemistry Research, 2010, 49(19), 9105.
33 Liu W, Low N W L, Feng B, et al. Environmental Science & Technology, 2010, 44(2), 841.
34 Broda M, Müller C R. Advanced Materials, 2012, 24(22),3059.
35 Chen H, Zhao C, Chen M, et al. Fuel Processing Technology, 2011, 92(5), 1144.
36 Hu Y, Liu W, Sun J, et al. Fuel, 2016, 167, 17.
37 Ridha F N, Manovic V, Macchi A, et al. Fuel Processing Technology, 2013, 116, 284.
38 Kierzkowska A M, Pacciani R, Müller C R. ChemSusChem, 2013, 6(7), 1130.
39 Readman J E, Blom R. Physical Chemistry Chemical Physics, 2005, 7(6), 1214.
40 Wang K, Yin Z, Zhao P, et al. Energy & Fuels, 2015, 29(7), 4428.
41 Wang K, Hu X, Zhao P, et al. Applied Energy, 2016, 165, 14.
42 Sánchez-Jiménez P E, Valverde J M, Perejón A, et al. Crystal Growth & Design, 2016, 16(12), 7025.
43 Sun J, Yang Y, Guo Y, et al. Fuel, 2018, 222, 334.
44 Mignoni M L, Petkowicz D I, Machado N R C F, et al. Applied Clay Science, 2008, 41(1), 99.
45 Mahmoudi S, Srasra E, Zargouni F. Applied Clay Science, 2008, 42(1), 125.
46 Wang K, Guo X, Zhao P, et al. Applied Clay Science,2010,50(1), 41.
47 Wang K, Zhao P, Guo X, et al. Energy Conversion and Management, 2014, 86, 1147.
48 Ridha F N, Manovic V, Macchi A, et al. International Journal of Greenhouse Gas Control, 2012, 6, 164.
49 Ping H R, Liu B, Liu X C. Chemical Engineering Design Communications, 2020, 46(8), 67(in Chinese).
平寒锐, 刘斌, 刘晓辰. 化工设计通讯, 2020, 46(8), 67.
50 Huang C H, Deng Y S, Xing X L, et al. Journal of Jiaozuo Institute of Technology(Natural Science), 2004(2), 143(in Chinese).
黄存捍, 邓寅生, 邢学玲等.焦作工学院学报(自然科学版), 2004(2), 143.
51 Cheng J, Zhou J, Liu J, et al. Energy & Fuels, 2009, 23(3), 2506.
52 Li Y, Liu H, Sun R, et al. Journal of Thermal Analysis and Calorimetry, 2011, 110(2), 685.
53 Li Y J, Xie X, Sun R Y, et al. Proceedings of the CSEE, 2014, 34(26), 4447(in Chinese).
李英杰, 谢辛, 孙荣岳等.中国电机工程学报, 2014, 34(26), 4447.
54 Niu J N, Zhang D F, Jin Y, et al. Chinese Journal of Process Enginee-ring, 2014, 14, 340(in Chinese).
牛佳宁, 张登峰, 金悦等.过程工程学报, 2014, 14, 340.
55 Li Y, Sun R, Liu C, et al. International Journal of Greenhouse Gas Control, 2012, 9, 117.
56 Li Y, Sun R, Liu H, et al. In: Cleaner Combustion and Sustainable World. Berlin, 2013, pp.1233.
57 Sun R, Li Y, Zhao J, et al. International Journal of Hydrogen Energy, 2013, 38(31), 13655.
58 Liu C, Li Y, Sun R, et al. Asia-Pacific Journal of Chemical Enginee-ring, 2014, 9(5), 678.
59 Li Y, Su M, Xie X, et al. Applied Energy, 2015, 145, 60.
60 Ma X, Li Y, Shi L, et al. Applied Energy, 2016, 168, 85.
62 Cai J, Yan F, Luo M, et al. Fuel, 2020, 280,118575.
61 Ma X, Li Y, Chi C, et al. Korean Journal of Chemical Engineering, 2016, 34(2), 580.
63 Ma X, Li Y, Yan X, et al. Chemical Engineering Journal, 2019, 361, 235.
64 Sun J, Liu W, Hu Y, et al. Chemical Engineering Journal, 2016, 285, 293.
65 Sun J, Sun Y, Yang Y, et al. Applied Energy, 2019, 242, 919.
66 Ma X, Li Y, Zhang C, et al. Process Safety and Environmental Protection, 2020, 141, 380.
67 Bai S B, Zhou Y, Chen Y N, et al. Chemical Engineering & Technology, 2020,43(11),2190.
68 Ives M, Mundy R C, Fennell P S, et al. Energy & Fuels, 2008, 22(6), 3852.
69 Li Y J, Zhao C S, Chen H C, et al. Chemical Engineering & Technology, 2009, 32(8), 1176.
70 Ma K W, Teng H. Journal of the American Ceramic Society,2010,93(1), 221.
71 Sacia E R, Ramkumar S, Phalak N, et al. ACS Sustainable Chemistry & Engineering, 2013, 1(8), 903.
72 Mohammadi M, Lahijani P, Mohamed A R. Chemical Engineering Journal, 2014, 243, 455.
73 Shan S, Ma A, Hu Y, et al. Environmental Pollution, 2016, 208, 546.
74 He S, Hu Y, Hu T, et al. Journal of Alloys and Compounds, 2017, 701, 828.
75 Ridha F N, Wu Y, Manovic V, et al. Chemical Engineering Journal, 2015, 274, 69.
76 Li Y, Zhao C, Ren Q, et al. Fuel Processing Technology, 2009, 90(6), 825.
77 Chen H, Zhao C, Ren Q. Jurnal of Environmental Management, 2012, 93(1), 235.
78 Pathi S K, Lin W, Illerup J B, et al. Energy & Fuels, 2013, 27(9), 5397.
79 Qin C, Yin J, An H, et al. Energy & Fuels, 2011, 26(1), 154.
80 Moghtaderi B, Zanganeh J, Shah K, et al. Energy & Fuels, 2012, 26(4), 2046.
81 Manovic V, Anthony E J. Energy & Fuels, 2009, 23(10), 4797.
82 Manovic V A, Edward J. Industrial Engineering Chemistry Research, 2009, 48(19), 8906.
83 Manovic V, Anthony E J. Environmental Science Technology, 2009, 43(18), 7117.
84 Cai J, Wang S, Xiao Z. Fuel, 2018, 222, 232.
85 Sun R, Li Y, Liu C, et al. Chemical Engineering Journal, 2013, 221, 124.
86 Ma A, Jia Q, Su H, et al. Environmental Science and Pollution Research International, 2016, 23(3), 2530.
87 马艾华. 改性造纸白泥循环捕集二氧化碳的性能研究. 硕士学位论文, 昆明理工大学, 2016.
88 Pinheiro C I C, Fernandes A, Freitas C, et al. Industrial & Engineering Chemistry Research, 2016, 55(29), 7860.
89 Jiang L. Clean Coal Technology, 2020, 26(4), 31(in Chinese).
姜龙.洁净煤技术, 2020, 26(4), 31.
90 Ren Q X, Zhao L, LI C. Energy and Energy Conservation, 2015(10), 113(in Chinese).
任启欣, 赵亮, 李超.能源与节能, 2015(10), 113.
91 Yan F, Jiang J, Li K, et al. ACS Sustainable Chemistry & Engineering, 2015, 3(9), 2092.
92 Yan F, Jiang J, Zhao M, et al. Journal of Materials Chemistry A, 2015, 3(15), 7966.
93 Yang L, Yu H B, Wang S Q, et al. Journal of Chemical Industry and Engineering, 2012,63(2),606(in Chinese).
杨磊, 于宏兵, 王胜强等.化工学报, 2012,63(2),606.
94 Chen H, Khalili N. Industrial & Engineering Chemistry Research, 2017, 56(7), 1888.
95 He D, Pu G, Qin C, et al. Industrial & Engineering Chemistry Research, 2017, 56(51), 15143.
96 He D, Qin C, Manovic V, et al. Fuel Processing Technology, 2017, 156, 339.
97 Chen H, Wang F, Zhao C, et al. Chemical Engineering Journal, 2017, 309, 725.
98 Sreenivasulu B, Sreedhar I, Reddy B M, et al. Energy & Fuels, 2017, 31(1), 785.
99 Zhang Y J. Experimental study on modification and activation of calcium-based CO2 adsorbent. Master’s Thesis, North China University, China, 2019(in Chinese).
张有晶. 钙基CO2吸附剂的改性和活化实验研究. 硕士学位论文, 中北大学, 2019.
100 Yan F, Jiang J, Li K, et al. Environmental Science Technology, 2017, 51(13), 7606.
101 Yan F, Jiang J, Li K, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(12), 7004.
102 Kato M, Yoshikawa S, Nakagawa K. Journal of Materials Science Letters, 2002, 21(6), 485.
103 Kato M, Nakagawa K, Essaki K, et al. International Journal of Applied Ceramic Technology, 2005, 2(6), 467.
104 Hu Y, Liu W, Yang Y, et al. Chemical Engineering Journal, 2019, 359, 604.
105 Shan S, Li S, Jia Q, et al. Industrial & Engineering Chemistry Research, 2013, 52(21), 6941.
106 Niu M, Li X, Ouyang J, et al. RSC Advances, 2016, 6(50), 44106.
107 Zhang Y, Zhou T, Louis B, et al. Catalysts, 2017, 7(12),105.
108 Nguyen A N, Reinert L, Lévêque J M, et al. Applied Clay Science, 2013, 72, 9.
109 Zhang Y, Yu F, Louis B, et al. Chemical Engineering Journal, 2018, 349, 562.
110 Zhang Y, Gao Y, Yu F, et al. Chemical Engineering Journal, 2019, 371, 424.
111 Shan S, Jia Q, Jiang L, et al. Chinese Science Bulletin,2012,57(19), 2475.
112 Shan S, Jia Q, Jiang L, et al. Ceramics International, 2013, 39(5), 5437.
113 Hong J K, Jo H Y, Yun S T. Journal of Hazardous Materials, 2009, 164(1), 235.
114 Izquierdo M T, Gasquet V, Sansom E, et al. Fuel, 2018, 230, 45.
115 Olivares-Marín M, Drage T C, Maroto-Valer M M. International Journal of Greenhouse Gas Control, 2010, 4(4), 623.
116 Zhang Q, Liang X, Peng D, et al. Thermochimica Acta, 2018, 669, 80.
117 Wang H, Zhang J, Wang G, et al. Journal of Thermal Analysis and Calorimetry, 2018, 133(2), 981.
118 Wang K, Zhao P, Guo X, et al. Environmental Progress & Sustainable Energy, 2015, 34(2), 526.
119 Wang K, Guo X, Zhao P, et al. Journal of Hazardous Materials, 2011, 189(1), 301.
120 Wang J, Zhang T, Yang Y, et al. Energy & Fuels, 2019, 33(3), 1734.
121 Bai Q J, Wu B, Zhao F, et al.Journal of Hebei University of Architecture Civil Engineering, 2018, 36(3), 28(in Chinese).
白启敬, 吴宝, 赵飞等.河北建筑工程学院学报, 2018, 36(3), 28.
122 Guo X L, Xing P F. New Chemical Materials, 2020, 48(9),218(in Chinese).
郭晓琳, 邢鹏飞.化工新型材料, 2020, 48(9),218.
123 Bao W Y, Liu X G, Li B, et al. Grain Science and Technology and Economy, 2017, 42(4),72(in Chinese).
鲍雯钰, 刘晓庚, 李博等.粮食科技与经济, 2017, 42(4),72.
124 Nayak J P, Bera J. Transactions of the Indian Ceramic Society, 2009, 68(2), 91.
125 Choudhary A, Sahu B S, Mazumder R, et al. Journal of Alloys and Compounds, 2014, 590, 440.
126 Wang K, Zhao P, Guo X, et al. Energy Conversion and Management, 2014, 81, 447.
127 Peng X L. Preparation of high temperature CO2 adsorption material lithium silicate from rice husk ash as silicon source. Master’s Thesis, Chengdu University of Technology, China, 2016(in Chinese).
彭小丽. 稻壳灰为硅源制备高温CO2吸附材料硅酸锂的研究. 硕士学位论文, 成都理工大学, 2016.
128 Hoyos L S, Faroldi B, Cornaglia L. Journal of Alloys and Compounds, 2019, 778, 699.
129 Wang N, Feng Y, Chen Y, et al. Fuel, 2019, 245, 263.
130 Sanna A, Ramli I, Maroto-Valer M M. Energy Procedia, 2014, 63, 739.
131 Sanna A, Maroto-Valer M M. Industrial & Engineering Chemistry Research, 2016, 55(14), 4080.
132 Sanna A, Ramli I, Mercedes M.Applied Energy, 2015, 156, 197.
133 Sanna A, Maroto-Valer M M. Environmental Science and Pollution Research International, 2016, 23(22), 22242.
[1] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[2] 宋普涛, 王晶, 关青锋, 周永祥, 黄靖, 冷发光. 混凝土用珊瑚砂氯离子溶出规律研究[J]. 材料导报, 2020, 34(Z2): 250-254.
[3] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[4] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[5] 王晴, 李天如, 张强, 丁兆洋. 基于灰色关联与二分法的无机矿物聚合物强度特性研究*[J]. 《材料导报》期刊社, 2017, 31(23): 182-186.
[6] 许乃才, 史丹丹, 党力, 洪天增, 董亚萍, 刘忠, 李武. CaO-Al2O3二元氧化物吸附剂的制备、表征及除氟性能研究*[J]. 《材料导报》期刊社, 2017, 31(16): 36-40.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed