Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17103-17110    https://doi.org/10.11896/cldb.20090007
  材料与可持续发展(四)———材料再制造与废弃物料资源化利用* |
面向固废资源化的能源-环境-经济综合绩效评价研究进展
杨名1,2, 顾一帆1,2, 吴玉锋1,2, 潘德安1,2, 龚裕1,2
1 北京工业大学循环经济研究院,北京 100124
2 北京工业大学材料与制造学部,北京 100124
Research Progress of Energy-Environment-Economy Comprehensive Performance Assessment for Solid Waste Recycling
YANG Ming1,2, GU Yifan1,2, WU Yufeng1,2, PAN Dean1,2, GONG Yu1,2
1 Institute of Circular Economy,Beijing University of Technology, Beijing 100124, China
2 Faculty of Materials and Manufacturing,Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 2288KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着经济快速发展,城市化进程不断加快,固废数量持续增长,固废资源化问题受到广泛关注。由于固废资源化技术工艺众多,且具有资源能源节约、环境保护和经济效益等多重属性,其评价方法已成为当下研究的热点。能源-环境-经济(3E)评价此前已被广泛应用于能源、环境、经济的可持续发展研究,可对3E综合绩效进行统筹量化评估,与固废资源化具有相似的属性定位,已逐渐应用到固废资源化的绩效评估中。
近年来,已有部分学者采用3E评价方法对固废资源化技术的综合绩效进行分析,然而,固废资源化技术与生产制造等正向供应链技术不同,固废资源化过程受到上游不同原材料的影响较大,且固废原材料组分复杂,导致污染物排放种类众多,回收利用过程的物质产出同时涉及资源、能源、污染物等诸多方面。传统的3E评价存在视角未涉及全生命周期过程、指标难以适配固废资源化技术等问题,已难以适用于固废资源化技术工艺综合绩效的评价与优化。
在现有面向固废资源化的3E评价指标研究中,有学者将发电量、产热量、产气量等指标纳入再生能源指标中,但针对再生资源产出等指标尚未涉及;此外,针对单一过程的单一环境指标难以满足固废资源化评价多过程、多指标的要求,将生命周期评价方法作为环境指标选取的依据是今后重要的研究方向;在经济指标的研究中,固废资源化技术带来的环保税抵扣、减免和政策补贴等经济因素有待进一步研究。在评价方法的研究中,目前多采用与主客观赋权方法相结合的多属性决策方法以降低权重带来的主观影响,通过改进优化算法的多目标优化方法与多属性决策相结合,为技术工艺的择选与优化提供理论支撑。
本文阐明了固废资源化与3E评价之间的关系,基于大样本筛选出的119篇SCI论文,分析3E评价研究视角、指标体系及评价方法的设计思路,探索固废资源化过程与3E评价相结合的可行性,提出固废资源化多维绩效评价的发展展望,以期为固废资源化评价工作提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨名
顾一帆
吴玉锋
潘德安
龚裕
关键词:  固废资源化  3E评价  指标体系  评价方法    
Abstract: As economy and urbanization continue to increase, the solid waste production should also increase, the solid waste recycling has been widely concerned. Solid waste recycling has multiple attributes, such as resource and energy saving, environmental protection and economic benefits, as many solid waste recycling technologies need to be assessed. The assessment method has become the research hotspot now. Energy-environment-economy (3E) assessment has been widely used in the study of sustainable development of energy, environment and economy, which can realize the comprehensive quantitative assessment of comprehensive performance. Because of the similar properties with solid waste recycling, we have gradually applied 3E assessment to the research of solid waste recycling performance assessment.
In recent years, some scholars have used the 3E assessment to analyze the comprehensive performance of solid waste recycling technology. However, the solid waste recycling technology differs from other forward supply chain technologies such as manufacturing. Solid waste recycling process is affected by different upstream raw materials, and the complex composition of solid waste raw materials leads to many kinds of pollutant emission. Besides, the output of the recycling process also involves resources, energy, pollutants and many other aspects. The perspective of traditional 3E assessment doesn’t involve the whole life cycle process, and the index is not suitable for solid waste recycling assessment and optimization.
Among the existing literature of 3E assessment indicators for solid waste recycling, some scholars have included electricity generation, heat generation, gas generation and other indicators into the renewable energy indicators, but renewable resource output indicators have not been involved. In addition, a single environmental index of a single process can not meet the requirements of multiple processes and indexes for solid waste recycling assessment. Therefore, using life cycle assessment to select environmental indicators is an important research direction. The factors such as environmental tax deduction and policy subsidies brought by solid waste recycling technology need to be further studied. In the research on assessment methods, the multi-attribute decision making combine subjective and objective weighting methods are currently used to turn away the subjective influence, the combination of multi-objective optimization and multi-attribute decision making can provide theoretical support for the selection and optimization of technology and process.
This paper illuminates the relationship of solid waste recycling and 3E assessment from 119 SCI researches, and analyzes the design idea of the research perspective, index system and assessment method, explores the feasibility of combining the solid waste recycling process with the 3E assessment, and puts forward the development prospect of comprehensive performance assessment of solid waste recycling, in order to provide new ideas for the solid waste recycling assessment.
Key words:  solid waste recycling    3E assessment    index system    assessment method
                    发布日期:  2021-09-26
ZTFLH:  N945.16  
基金资助: 国家自然科学基金(52070007);国家重点研发计划(2018YFC1903603;2018YFC1903106)
通讯作者:  wuyufeng3r@126.com   
作者简介:  杨名,2018年7月毕业于北京工业大学,获得工学学士学位。现为北京工业大学材料与制造学部博士研究生,在吴玉锋教授的指导下进行研究。目前主要研究领域为资源环境与循环经济。
吴玉锋,北京工业大学材料与制造学部教授,“资源环境与循环经济”交叉专业博士生导师,长期从事循环经济技术、政策及应用模式研究。主持国家重点研发计划、国家自然基金等来源项目30余项。以第一或通信作者在Journal of Cleaner Production、ACS Sustainable Chemistry & Engineering、《中国工业经济》等国内外期刊发表学术论文70余篇,其中SCI/CSSCI收录50余篇。
引用本文:    
杨名, 顾一帆, 吴玉锋, 潘德安, 龚裕. 面向固废资源化的能源-环境-经济综合绩效评价研究进展[J]. 材料导报, 2021, 35(17): 17103-17110.
YANG Ming, GU Yifan, WU Yufeng, PAN Dean, GONG Yu. Research Progress of Energy-Environment-Economy Comprehensive Performance Assessment for Solid Waste Recycling. Materials Reports, 2021, 35(17): 17103-17110.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090007  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17103
1 National Bureau of Statistics of China. China statistical yearbook, China Statistics Press, 2018(in Chinese).
中华人民共和国国家统计局.中国统计年鉴,中国统计出版社,2018.
2 Abdel-Shafy H I, Mansour M S M. Egyptian Journal of Petroleum, 2018, 27(4), 1275.
3 Tan S T, Ho W S, Hashim H, et al. Energy Conversion and Management, 2015, 102, 111.
4 Beccali M, Brunone S, Cellura M, et al. Renewable Energy, 2008, 33(3), 366.
5 Houshyar E, Dalgaard T, Tarazkar M H, et al. Journal of Cleaner Production,2015, 89, 99.
6 Anastaselos D, Oxizidis S, Papadopoulos A M. Energy & Buildings, 2011, 43(2), 686.
7 Xiao J, Shen L, Zhang Y, et al. Industrial & Engineering Chemistry Research, 2009, 48(22), 9999.
8 Dong J, Chi Y, Zou D, et al. Applied Energy, 2014, 114, 400.
9 Mcphail A, Griffin R, El-Halwagi M, et al. Energy & Fuels, 2014, 28(2), 1453.
10 Chen G, Wang X, Li J, et al. Science of the Total Environment, 2019, 647, 1433.
11 Yi Q, Feng J, Wu Y, et al. Energy, 2014, 66, 285.
12 Suresh M V J J, Reddy K S, Kolar A K. Energy for Sustainable Development, 2010, 14(4), 267.
13 Wang C, Chang Y, Zhang L, et al. Energy, 2017, 120, 374.
14 Angrisani G, Roselli C, Sasso M, et al. Energies (Basel), 2014, 7(10), 6741.
15 Rajendran K. Processes, 2017, 5(4), 78.
16 Bina S M, Jalilinasrabady S, Fujii H. Energy, 2017, 140, 1096.
17 Faizal M, Saidur R, Mekhilef S, et al. Energy Conversion and Management, 2013, 76, 162.
18 Faizal M, Saidur R, Mekhilef S, et al. Clean Technologies and Environmental Policy, 2014, 17(6), 1457.
19 Varun, Prakash R, Bhat I K. Renewable and Sustainable Energy Reviews, 2009, 13(9), 2716.
20 Adibhatla S, Kaushik S C. Sustainable Energy Technologies and Assessments, 2017, 21, 89.
21 Abuşka M, Şevik S. Solar Energy, 2017, 158, 259.
22 Deniz E, Çinar S. Energy Conversion and Management, 2016, 126, 12.
23 Ghaebi H, Farhang B, Rostamzadeh H, et al. International Journal of Hydrogen Energy, 2018, 43(3), 1855.
24 Adedeji M J, Ruwa T L, Abid M, et al. Energy Procedia,2017,142,916.
25 Purwanto W W, Pratama Y W, Nugroho Y S, et al. Renewable Energy, 2015, 81, 308.
26 Keoleian G A, Volk T A. Critical Reviews in Plant Sciences, 2005, 24(5-6), 385.
27 Hammond G P, Harajli H A, Jones C I, et al. Energy Policy, 2012, 40, 219.
28 Chamorro C R, Mondéjar M E, Ramos R, et al. Energy (Oxford), 2012, 42(1), 10.
29 Xu Y, Jiang N, Pan F, et al. Energy Conversion and Management, 2017, 133, 535.
30 Silva S M, Mateus R, Marques L, et al. Solar Energy Materials and Solar Cells, 2016, 156, 59.
31 Kaiser M J, Olatubi W O, Pulsipher A G. Energy Policy, 2005, 33(7), 873.
32 Faria M V, Baptista P C, Farias T L. Transportation Research Part A, 2014, 64, 110.
33 Dincer I, Rosen M A. Applied Thermal Engineering,2001,21(11),1105.
34 Atabani A E, Saidur R, Silitonga A S, et al. Applied Mechanics and Materials, 2012, 110, 3223.
35 Cascone S, Catania F, Gagliano A, et al. Energy and Buildings, 2018, 166, 83.
36 Entchev E, Yang L, Ghorab M, et al. Alexandria Engineering Journal, 2018, 57(1), 455.
37 Saidur R, Rahim N A, Hasanuzzaman M, et al. Clean Technologies and Environmental Policy, 2012, 14(2), 195.
38 Saidur R. Energy Education Science and Technology Part A-Energy Science and Research, 2010, 25(1-2), 1.
39 Ziogou I, Michopoulos A, Voulgari V, et al. Journal of Cleaner Production, 2017, 168, 346.
40 Habibi Khalaj A, Scherer T, K. Halgamuge S. Applied Energy, 2016, 183, 1528.
41 Tantisattayakul T, Pharino C, Chavalparit O, et al. Energy for Sustai-nable Development, 2016, 34, 88.
42 Dixit M, Arora A, Kaushik S C. Clean Technologies and Environmental Policy, 2017, 19(9), 2215.
43 Shekarchian M, Zarifi F, Moghavvemi M, et al. Energy Conversion and Management, 2013, 71, 51.
44 Sheykhi M, Chahartaghi M, Balakheli M M, et al. Energy conversion and management, 2019, 180, 183.
45 Wang H, Wu J, Zhu X, et al. Applied Energy, 2016, 171, 314.
46 Gil-Lopez T, Gimenez-Molina C. Applied Energy, 2013, 101, 572.
47 Silvestre J D, de Brito J, Pinheiro M D. Energy & Buildings, 2013, 64, 199.
48 Hazi A, Hazi G. Environmental Engineering and Management Journal, 2017, 16(5), 1041.
49 Yao J. Sustainability (Basel, Switzerland), 2014, 6(2), 602.
50 Scoccia R, Toppi T, Aprile M, et al. Journal of Building Engineering, 2018, 16, 94.
51 Pergola M, Favia M, Palese A M, et al. Scientia Horticulturae, 2013, 162, 380.
52 Anastaselos D, Giama E, Papadopoulos A M. Energy and Buildings, 2009, 41(11), 1165.
53 Abdel-Salam A H, Simonson C J. Applied Energy, 2014, 116, 134.
54 Mousavi-Avval S H, Rafiee S, Sharifi M, et al. Journal of Cleaner Production, 2017, 140, 804.
55 Winebrake J J, Corbett J J, Falzarano A, et al. J Air Waste Manag Assoc, 2008, 58(8), 1004.
56 Nabavi-Pelesaraei A, Rafiee S, Mohtasebi S S, et al. Energy (Oxford), 2019, 169, 1259.
57 Li Z, Gao D, Chang L, et al. Chemical Engineering Research and Design, 2010, 88(1), 73.
58 Fathollahi H, Mousavi-Avval S H, Akram A, et al. Journal of Cleaner Production, 2018, 182, 852.
59 Sivaraman D, Pacca S, Mueller K, et al. Journal of Industrial Ecology, 2007, 11(3), 77.
60 Larsson M, Wang C, Dahl J. Applied Thermal Engineering, 2006, 26(13), 1353.
61 Spayde E, Mago P J, Luck R, et al. Energies (Basel), 2018, 11(2), 276.
62 Ferreira J, Barata E, Ramos P N, et al. Energy Policy, 2014, 66, 411.
63 Singh R J, Meena R L, Sharma N K, et al. Environ Monit Assess, 2016, 188(2), 79.
64 Li Y, Davis C, Lukszo Z, et al. Applied Energy, 2016, 173, 535.
65 Rasouli M, Akbari S, Simonson C J, et al. Energy & Buildings, 2014, 69, 112.
66 Chen Q, Ja M K, Li Y, et al. Energy (Oxford), 2018, 151, 387.
67 Stolarski M J, Krzyžaniak M, Warmiński K, et al. Energy & Buildings, 2013, 66, 395.
68 Saidur R, Mahlia T M I. Energy Policy, 2010, 38(8), 4617.
69 Papadopoulos A M, Oxizidis S, Papandritsas G. Energy & Buildings, 2008, 40(3), 224.
70 Feng L, Mears L, Beaufort C, et al. Energy Conversion and Management, 2016, 117, 454.
71 Gil-Lopez T, Sanchez-Sanchez A, Gimenez-Molina C. Applied Energy, 2014, 113, 622.
72 Torchio M F, Santarelli M G. Energy, 2010, 35(10), 4156.
73 González Palencia J C, Araki M, Shiga S. Applied Energy, 2016, 181, 96.
74 Jain V, Sachdeva G, Kachhwaha S S. Energy, 2015, 91, 816.
75 Reddy K S, Sharon H. Energy Conversion and Management, 2017, 151, 259.
76 Dias A M, Barros J, Serrano L. Advanced Materials Research,2010, 107, 129.
77 Miguel G S, Corona B, Ruiz D, et al. Journal of Cleaner Production, 2015, 94, 93.
78 Las-Heras-Casas J, López-Ochoa L M, Paredes-Sánchez J P, et al. Journal of Cleaner Production, 2018, 176, 590.
79 Rubio-Aliaga Á, García-Cascales M S, Sánchez-Lozano J M, et al. Renewable Energy, 2019, 138, 174.
80 Mazzeo D. Energy (Oxford), 2019, 168, 310.
81 Lollini, Barozzi, Fasano, et al. Building and Environment, 2006, 41(8), 1001.
82 Rad E A, Fallahi E. Construction & Building Materials,2019,205,196.
83 Qin X, Wei Q, Wang L, et al. International Journal of Photoenergy, DOI: 10.1155/2015/926235.
84 Pergola M, D'Amico M, Celano G, et al. Journal of Environmental Mana-gement, 2013, 128, 674.
85 Nabavi-Pelesaraei A, Rafiee S, Mohtasebi S S, et al. Journal of Cleaner Production, 2019, 217, 742.
86 Xu D, Qu M. Energy & Buildings, 2013, 67, 176.
87 Wang L, Lu J, Wang W, et al. Applied Energy, 2016, 183, 874.
88 Torchio M F. Energy Conversion and Management, 2015, 92, 114.
89 Sibilio S, Rosato A, Ciampi G, et al. Renewable and Sustainable Energy Reviews, 2017, 68, 920.
90 Lissén J M S, Rodríguez L R, Parejo F D, et al. Sustaina-bility (Basel, Switzerland), 2018, 10(11), 4082.
91 Rosato A, Sibilio S, Ciampi G, et al. Energy Procedia,2017,111,699.
92 Rosato A, Sibilio S, Ciampi G. Applied Thermal Engineering, 2013, 59(1-2), 599.
93 Mago P J, Chamra L M, Hueffed A. International Journal of Energy Research, 2009, 33(14), 1252.
94 Mago P J, Chamra L M. Energy and Buildings, 2009, 41(10), 1099.
95 Lazzaretto A, Toffolo A. Energy, 2004, 29(8), 1139.
96 Kang L, Yang J, Deng S, et al. Energy Procedia, 2016, 88, 510.
97 Iodice P, D'Accadia M D, Abagnale C, et al. Applied Thermal Enginee-ring, 2016, 95, 330.
98 Gargari S G, Rahimi M, Ghaebi H. Energy Conversion and Management, 2019, 185, 816.
99 Esrafilian M, Ahmadi R. Desalination, 2019, 454, 20.
100 Ershadi H, Karimipour A. Energy (Oxford), 2018, 149, 286.
101 Ehyaei M A, Mozafari A. Energy & Buildings, 2010, 42(2), 259.
102 Di Gregorio F, Zaccariello L. Energy, 2012, 42(1), 331.
103 Ciampi G, Rosato A, Scorpio M, et al. Energy Procedia,2015,78,1141.
104 Yu S, Tao J. Applied Energy, 2009, 86(1), S178.
105 Wang Z, Calderon M M, Lu Y. Biomass and Bioenergy, 2011, 35(7), 2893.
106 Pimentel D. Natural Resources Research, 2003, 12(2), 127.
107 Moraes B S, Junqueira T L, Pavanello L G, et al. Applied Energy, 2014, 113, 825.
108 Michopoulos A, Skoulou V, Voulgari V, et al. Energy Conversion and Management, 2014, 78, 276.
109 Hu Z, Tan P, Yan X, et al. Energy, 2008, 33(11), 1654.
110 Hu Z, Pu G, Fang F, et al. Renewable Energy, 2004, 29(14), 2183.
111 Fasahati P, Liu J J. Energy (Oxford), 2015, 93, 2321.
112 de Carvalho A L, Antunes C H, Freire F. Applied Energy, 2016, 181, 514.
113 Song J, Yang W, Li Z, et al. Energy Conversion and Management, 2016, 114, 168.
114 Pergola M, Piccolo A, Palese A M, et al. Journal of Cleaner Production, 2018, 172, 3969.
115 Ogorure O J, Oko C O C, Diemuodeke E O, et al. Energy Conversion and Management, 2018, 171, 222.
116 Nizami A, Rehan M, Naqvi M, et al. Energy Procedia, 2017, 142, 910.
117 Li H, Jin C, Mundree S. Journal of Cleaner Production, 2017, 153, 131.
118 Hublin A, Schneider D R, Džodan J. Waste Management & Research, 2014, 32(7), 626.
119 Fei F, Wen Z, Huang S, et al. Journal of Cleaner Production, 2018, 178, 731.
120 Carneiro M L N M, Gomes M S P. Energy Conversion and Management, 2019, 179, 397.
121 Ayodele T R, Alao M A, Ogunjuyigbe A S O. Resources, Conservation & Recycling, 2018, 134, 165.
122 Li L N. Several typical types of methods about multiple attribute decision making. Master’s Thesis, Southwest Jiaotong University, China, 2013(in Chinese).
李丽娜. 几种典型类型的多属性决策方法. 硕士学位论文,西南交通大学, 2013.
123 Wu Y J, Su Y Q, Cheng L X. Electrical & Energy Management Technology, 2015(16), 63(in Chinese).
吴英俊, 苏宜强, 成乐祥. 电器与能效管理技术, 2015(16), 63.
124 Guo J Y, Zhang Z B, Sun Q Y. China Safety Science Journal, 2008(5), 148(in Chinese).
郭金玉,张忠彬,孙庆云. 中国安全科学学报, 2008(5), 148.
125 Guo J W, Pu X Q, Gao X, et al. Journal of Xidian University, 2014, 41(6), 118(in Chinese).
郭金维,蒲绪强,高祥,等. 西安电子科技大学学报,2014,41(6),118.
126 Song D M, Liu C X, Shen C, et al. Journal of Shandong University(Engineering Science), 2015, 45(4), 1(in Chinese).宋冬梅,刘春晓,沈晨,等. 山东大学学报(工学版),2015,45(4),1.
127 Hofstetter P, Braunschweig A, Mettier T, et al. Journal of Industrial Ecology, 1999, 3(4), 97.
128 Zhou G, Gu Y, Yuan H, et al. Resources, Conservation and Recycling, 2020, 161, 104881.
129 Gu Y F. Theory and demonstration of resource & environment value compensation between primary and secondary industries. Ph.D. Thesis, Beijing University of Technology, China, 2018(in Chinese).
顾一帆. 原生与再生产业间资源环境价值补偿理论与实证研究. 博士学位论文,北京工业大学, 2018.
130 Yang Y R, Hou X L. Modern Economic Information, 2013(15), 80(in Chinese).
杨颖蓉,侯学良. 现代经济信息, 2013(15), 80.
131 Gu Y, Wu Y, Xu M, et al. Journal of Cleaner Production, 2016, 127, 331.
[1] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[2] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[3] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[4] 张鹏, 冯竟竟, 陈伟, 刘虎, 杨进波. 混凝土损伤自修复技术的研究与进展[J]. 材料导报, 2018, 32(19): 3375-3386.
[5] 王爱国,刘朋,孙道胜,刘开伟,方立安,曹菊芳. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1903-1909.
[6] 马凤森,喻炎,章捷,陈海波. 生物材料细胞毒性评价研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 76-85.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed