Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 85-89    https://doi.org/10.11896/j.issn.1005-023X.2017.023.011
  专题栏目:超高性能混凝土及其工程应用 |
水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*
王倩楠1, 顾春平2, 孙伟1
1 东南大学材料科学与工程学院,南京 211189;
2 浙江工业大学建筑工程学院,杭州 310014
Microstructure Evolution During Hydration Process of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume
WANG Qiannan1, GU Chunping2, SUN Wei1
1 School of Materials Science & Engineering, Southeast University, Nanjing 211189;
2 College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014
下载:  全 文 ( PDF ) ( 1188KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(UHPC)具有卓越的力学性能和耐久性能,应用前景广阔。采用扫描电镜背散射电子图像、热重法和氮气吸附法系统研究了水泥-粉煤灰-硅灰基UHPC浆体水化过程中微观结构的演变过程。结果表明:UHPC浆体在早期水泥水化较快,但7 d后水化变得较为缓慢,粉煤灰在UHPC浆体中反应较为缓慢,28 d时反应程度仅为7%;UHPC浆体中Ca(OH)2含量早期上升快速,由于硅灰和粉煤灰的火山灰反应逐渐消耗,3 d后含量开始下降,但28 d时浆体中仍存在部分Ca(OH)2;此外,在水化过程中,UHPC浆体的比表面积不断降低,孔隙率逐渐下降,水化产物变得更为致密。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王倩楠
顾春平
孙伟
关键词:  超高性能混凝土(UHPC)  浆体  反应程度  氢氧化钙  孔结构  水化过程    
Abstract: Ultra-high performance concrete (UHPC) is a promising material which exhibits extrodinary mechanical properties and durability. A UHPC paste containing fly ash and silica fume was prepared and its microstructure evolution during hydration was investigated with backscattered electron (BSE) images, thermogravimetry (TG) and nitrogen adsorption method. The results showed that the hydration of cement was fast at early ages, and it slowed down after 7 days. Due to its low activity, fly ash reacted slowly in the paste. The reaction degree of fly ash was only 7% by 28 days. The content of Ca(OH)2 increased quickly at first as the cement hydrated. After 3 days it started to decline due to the consumption by pozzolanic reactions of silica fume and fly ash. There was still some Ca(OH)2 existing in the paste by 28 days. Moreover, the specific surface area and the porosity of UHPC paste decreased as the curing progressed, resulting in a denser microstructure.
Key words:  ultra-high performance concrete (UHPC)    paste    reaction degree    calcium hydroxide    pore structure    hydration process
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家重点基础研究发展计划(973计划) (2009CB623200); 国家自然科学基金青年科学基金(51708502)
作者简介:  王倩楠: 女,1987年生,博士研究生,主要从事高强混凝土及纤维混凝土的传输性能研究 E-mail:wqnseu@163.com
引用本文:    
王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
WANG Qiannan, GU Chunping, SUN Wei. Microstructure Evolution During Hydration Process of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume. Materials Reports, 2017, 31(23): 85-89.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.011  或          https://www.mater-rep.com/CN/Y2017/V31/I23/85
1 Gu C P, Ye G, Sun W. Ultrahigh performance concrete-properties, applications and perspectives [J]. Sci China Technol Sci, 2015, 58(4):587.
2 Shi C, Wu Z, Xiao J, et al. A review on ultra high performance concrete: Part I. Raw materials and mixture design [J]. Constr Buil-ding Mater, 2015, 101:741.
3 Radlinski M, Olek J. Investigation into the synergistic effects in ternary cementitious systems containing portland cement, fly ash and silica fume [J]. Cem Concr Compos, 2012, 34(4):451.
4 Wu Z, Shi C, He W. Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes [J]. Constr Building Mater, 2017, 136:307.
5 Ridtirud C, Posi P, Chindaprasirt P. Development of high perfor-mance concrete containing high calcium fly ash [J]. Eng Appl Sci Res, 2016, 43:446.
6 Meng W, Valipour M, Khayat K H. Optimization and performance of cost-effective ultra-high performance concrete [J]. Mater Struct, 2016, 50(1):29.
7 Meng W, Khayat K H. Mechanical properties of ultra-high-perfor-mance concrete enhanced with graphite nanoplatelets and carbon nanofibers [J]. Compos Part B Eng, 2016, 107:113.
8 Zhao S, Sun W. Effect of silica fume and fly ash on pore structures of blended pastes at low water to binder ratios [J]. Adv Cem Res, 2015, 27(9):506.
9 Rong Z D, Sun W, et al. Effect of silica fume and fly ash on hydration and microstructure evolution of cement based compo-sites at low water-binder ratios [J]. Constr Build Mater, 2014, 51:446.
10 Weng J K, Langan B W, Ward M A. Pozzolanic reaction in portland cement, silica fume, and fly ash mixtures [J]. Canadian J Civil Eng, 1997, 24(5):754.
11 Wang D H. Hardening of ultra-high strength concrete [D]. Changsha: Hunan University, 2015(in Chinese).
王德辉. 超高强混凝土的硬化过程 [D]. 长沙: 湖南大学, 2015.
12 Feng X, Garboczi E J, et al. Estimation of the degree of hydration of blended cement pastes by a scanning electron microscope point-counting procedure [J]. Cem Concr Res, 2004, 34:1787.
13 Gu C P. Chloride transport property and service life prediction of UHPFRCC under flexural load [D]. Nanjing: Southeast University, 2016(in Chinese).
顾春平. 弯曲荷载作用下UHPFRCC的氯离子传输性能和服役寿命预测 [D]. 南京: 东南大学, 2016.
14 Ye G, Breugel K V, Fraaij A L A. Three-dimensional microstructure analysis of numerically simulated cementitious materials [J]. Cem Concr Res, 2003, 33(2):215.
15 Marsh B K, Day R L. Pozzolanic and cementitious reactions of fly ash in blended cement pastes [J]. Cem Concr Res, 1988, 18:301.
16 Zhang Q, Ye G, Koenders E. Investigation of the structure of hea-ted Portland cement paste by using various techniques [J]. Constr Building Mater, 2013, 38(2):1040.
17 Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers [J]. J Am Chem Soc, 1938, 60(2):309.
18 Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms [J]. J Am Chem Soc, 1951, 73:373.
19 Korpa A, Kowald T, Trettin R. Phase development in normal and ultra high performance cementitious systems by quantitative X-ray analysis and thermoanalytical methods [J]. Cem Concr Res, 2009, 39(2):69.
20 Huang W, Kazemi-Kamyab H, Sun W, et al. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC) [J]. Cem Concr Compos, 2017, 77:86.
21 Jennings H M. A model for the microstructure of calcium silicate hydrate in cement paste [J]. Cem Concr Res, 2000, 30(1):101.
22 Tennis P D, Jennings H M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes [J]. Cem Concr Res, 2000, 30(6):855.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[3] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[4] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[5] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[6] 朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
[7] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[8] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[9] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[10] 王习, 张云升, 张宇, 乔宏霞, 路承功, Hakuzweyezu Theogene, 刘志超, 李忠慧. CTF增效剂提升混凝土抗冻性能研究[J]. 材料导报, 2024, 38(19): 23030006-7.
[11] 刘雄飞, 王楠, 郝逸飞, 李辉. 磷酸镁水泥基帆布力学与微观性能研究[J]. 材料导报, 2024, 38(17): 23090003-6.
[12] 陈嘉伟, 张芸侨, 陈卓凡, 刘智, 李军, 卢忠远, 赖振宇. Mg(OH)2对磷酸镁水泥水化过程及性能的影响[J]. 材料导报, 2024, 38(17): 24010085-7.
[13] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[14] 陈翠翠, 张倩倩, 杨勇, 舒鑫, 冉千平. 低水胶比水泥浆体静动态流变行为的经时变化[J]. 材料导报, 2024, 38(15): 23040237-5.
[15] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed