Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 85-89    https://doi.org/10.11896/j.issn.1005-023X.2017.023.011
  专题栏目:超高性能混凝土及其工程应用 |
水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*
王倩楠1, 顾春平2, 孙伟1
1 东南大学材料科学与工程学院,南京 211189;
2 浙江工业大学建筑工程学院,杭州 310014
Microstructure Evolution During Hydration Process of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume
WANG Qiannan1, GU Chunping2, SUN Wei1
1 School of Materials Science & Engineering, Southeast University, Nanjing 211189;
2 College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014
下载:  全 文 ( PDF ) ( 1188KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(UHPC)具有卓越的力学性能和耐久性能,应用前景广阔。采用扫描电镜背散射电子图像、热重法和氮气吸附法系统研究了水泥-粉煤灰-硅灰基UHPC浆体水化过程中微观结构的演变过程。结果表明:UHPC浆体在早期水泥水化较快,但7 d后水化变得较为缓慢,粉煤灰在UHPC浆体中反应较为缓慢,28 d时反应程度仅为7%;UHPC浆体中Ca(OH)2含量早期上升快速,由于硅灰和粉煤灰的火山灰反应逐渐消耗,3 d后含量开始下降,但28 d时浆体中仍存在部分Ca(OH)2;此外,在水化过程中,UHPC浆体的比表面积不断降低,孔隙率逐渐下降,水化产物变得更为致密。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王倩楠
顾春平
孙伟
关键词:  超高性能混凝土(UHPC)  浆体  反应程度  氢氧化钙  孔结构  水化过程    
Abstract: Ultra-high performance concrete (UHPC) is a promising material which exhibits extrodinary mechanical properties and durability. A UHPC paste containing fly ash and silica fume was prepared and its microstructure evolution during hydration was investigated with backscattered electron (BSE) images, thermogravimetry (TG) and nitrogen adsorption method. The results showed that the hydration of cement was fast at early ages, and it slowed down after 7 days. Due to its low activity, fly ash reacted slowly in the paste. The reaction degree of fly ash was only 7% by 28 days. The content of Ca(OH)2 increased quickly at first as the cement hydrated. After 3 days it started to decline due to the consumption by pozzolanic reactions of silica fume and fly ash. There was still some Ca(OH)2 existing in the paste by 28 days. Moreover, the specific surface area and the porosity of UHPC paste decreased as the curing progressed, resulting in a denser microstructure.
Key words:  ultra-high performance concrete (UHPC)    paste    reaction degree    calcium hydroxide    pore structure    hydration process
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家重点基础研究发展计划(973计划) (2009CB623200); 国家自然科学基金青年科学基金(51708502)
作者简介:  王倩楠: 女,1987年生,博士研究生,主要从事高强混凝土及纤维混凝土的传输性能研究 E-mail:wqnseu@163.com
引用本文:    
王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
WANG Qiannan, GU Chunping, SUN Wei. Microstructure Evolution During Hydration Process of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume. Materials Reports, 2017, 31(23): 85-89.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.011  或          http://www.mater-rep.com/CN/Y2017/V31/I23/85
1 Gu C P, Ye G, Sun W. Ultrahigh performance concrete-properties, applications and perspectives [J]. Sci China Technol Sci, 2015, 58(4):587.
2 Shi C, Wu Z, Xiao J, et al. A review on ultra high performance concrete: Part I. Raw materials and mixture design [J]. Constr Buil-ding Mater, 2015, 101:741.
3 Radlinski M, Olek J. Investigation into the synergistic effects in ternary cementitious systems containing portland cement, fly ash and silica fume [J]. Cem Concr Compos, 2012, 34(4):451.
4 Wu Z, Shi C, He W. Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes [J]. Constr Building Mater, 2017, 136:307.
5 Ridtirud C, Posi P, Chindaprasirt P. Development of high perfor-mance concrete containing high calcium fly ash [J]. Eng Appl Sci Res, 2016, 43:446.
6 Meng W, Valipour M, Khayat K H. Optimization and performance of cost-effective ultra-high performance concrete [J]. Mater Struct, 2016, 50(1):29.
7 Meng W, Khayat K H. Mechanical properties of ultra-high-perfor-mance concrete enhanced with graphite nanoplatelets and carbon nanofibers [J]. Compos Part B Eng, 2016, 107:113.
8 Zhao S, Sun W. Effect of silica fume and fly ash on pore structures of blended pastes at low water to binder ratios [J]. Adv Cem Res, 2015, 27(9):506.
9 Rong Z D, Sun W, et al. Effect of silica fume and fly ash on hydration and microstructure evolution of cement based compo-sites at low water-binder ratios [J]. Constr Build Mater, 2014, 51:446.
10 Weng J K, Langan B W, Ward M A. Pozzolanic reaction in portland cement, silica fume, and fly ash mixtures [J]. Canadian J Civil Eng, 1997, 24(5):754.
11 Wang D H. Hardening of ultra-high strength concrete [D]. Changsha: Hunan University, 2015(in Chinese).
王德辉. 超高强混凝土的硬化过程 [D]. 长沙: 湖南大学, 2015.
12 Feng X, Garboczi E J, et al. Estimation of the degree of hydration of blended cement pastes by a scanning electron microscope point-counting procedure [J]. Cem Concr Res, 2004, 34:1787.
13 Gu C P. Chloride transport property and service life prediction of UHPFRCC under flexural load [D]. Nanjing: Southeast University, 2016(in Chinese).
顾春平. 弯曲荷载作用下UHPFRCC的氯离子传输性能和服役寿命预测 [D]. 南京: 东南大学, 2016.
14 Ye G, Breugel K V, Fraaij A L A. Three-dimensional microstructure analysis of numerically simulated cementitious materials [J]. Cem Concr Res, 2003, 33(2):215.
15 Marsh B K, Day R L. Pozzolanic and cementitious reactions of fly ash in blended cement pastes [J]. Cem Concr Res, 1988, 18:301.
16 Zhang Q, Ye G, Koenders E. Investigation of the structure of hea-ted Portland cement paste by using various techniques [J]. Constr Building Mater, 2013, 38(2):1040.
17 Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers [J]. J Am Chem Soc, 1938, 60(2):309.
18 Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms [J]. J Am Chem Soc, 1951, 73:373.
19 Korpa A, Kowald T, Trettin R. Phase development in normal and ultra high performance cementitious systems by quantitative X-ray analysis and thermoanalytical methods [J]. Cem Concr Res, 2009, 39(2):69.
20 Huang W, Kazemi-Kamyab H, Sun W, et al. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC) [J]. Cem Concr Compos, 2017, 77:86.
21 Jennings H M. A model for the microstructure of calcium silicate hydrate in cement paste [J]. Cem Concr Res, 2000, 30(1):101.
22 Tennis P D, Jennings H M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes [J]. Cem Concr Res, 2000, 30(6):855.
[1] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[2] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[3] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[4] 陈超, 孙振平. 硅灰对掺有无碱速凝剂水泥浆体性能的影响[J]. 材料导报, 2019, 33(14): 2348-2353.
[5] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[6] 朱学良, 魏智强, 白军善, 赵文华, 冯旺军, 姜金龙. 碳包覆氧化亚钴纳米颗粒的制备与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 621-625.
[7] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[8] 左迎峰, 肖俊华, 李萍, 王健, 李贤军, 吴义强. 水灰比对镁系无机轻质材料性能的影响规律[J]. 《材料导报》期刊社, 2018, 32(14): 2370-2375.
[9] 王丽, 王哲, 宁国艳, 沈玉林, 王喜明. 木基导电电磁屏蔽材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2320-2328.
[10] 吴燕飞, 陶凯, 白文静, 曹大丽, 李笑迎, 梁云霄. 整体型环氧树脂大孔聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(8): 31-34.
[11] 肖俊华,詹满军,陈秀兰,王 健,左迎峰,吴义强. 双氧水对镁系无机泡沫材料性能和孔结构的影响[J]. 《材料导报》期刊社, 2017, 31(24): 96-100.
[12] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[13] 邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
[14] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述*[J]. CLDB, 2017, 31(23): 17-23.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed