Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 78-84    https://doi.org/10.11896/j.issn.1005-023X.2017.023.010
  专题栏目:超高性能混凝土及其工程应用 |
具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*
吕生华1, 2, 孙立1, 张佳1, 胡浩岩1, 雷颖1, 侯永刚1
1 陕西科技大学轻工科学与工程学院,西安 710021;
2 轻化工程国家级实验教学示范中心(陕西科技大学),西安 710021
High/Ultra-high Performance Graphene Oxide/Cement-based Composites with Large-scale, Ordered and Compact Flower-like Microstructures
LU Shenghua1, 2, SUN Li1, ZHANG Jia1, HU Haoyan1, LEI Ying1, HOU Yonggang1
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology,Xi'an 710021;
2 National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology), Xi'an 710021;
下载:  全 文 ( PDF ) ( 1841KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过掺入氧化石墨烯(GO)及调控水灰比制备了高性能及超高性能水泥基复合材料,当水灰比为0.26及GO掺量为0.03%和0.05%时,水泥基复合材料的抗压强度和抗折强度分别为125.6 MPa、146.7 MPa和15.6 MPa、18.3 MPa。当水灰比为0.18及GO掺量为0.03%和0.05%时,水泥基复合材料的抗压强度和抗折强度分别为168.6 MPa、181.3 MPa和26.9 MPa、29.4 MPa。水泥基复合材料的抗渗透、抗冻融、抗碳化等性能得到了显著提高。通过SEM 观察水泥基体的微观形貌,发现水泥水化产物成为了形状规整的水化晶体,并且交织交联成为规整致密的花状微观形貌。XRD结果表明,规整形状水化晶体是由多种水泥水化晶体复合杂化形成的复合晶体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕生华
孙立
张佳
胡浩岩
雷颖
侯永刚
关键词:  高性能混凝土  氧化石墨烯  水化产物  微观结构    
Abstract: The high-and ultra-high-performance cement composites (HPC and UHPC) were prepared by doping graphene oxide (GO) and varying water-cement ratio. When water-cement ratio is 0.26 and GO dosage is 0.03% and 0.05%, the compressive and flexural strength of HPC were 125.6 MPa, 146.7 MPa and 15.6 MPa, 18.3 MPa, respectively. And while water-cement ratio is 0.18 and with 0.03% and 0.05% GO, the compressive and flexural strength were 168.6 MPa, 181.3 MPa and 26.9 MPa and 29.4 MPa, respectively. The penetration resistance, freeze-thaw resistance and carbonation resistance of the cement composites got remarkably improved by properly adding GO. The regular-shaped crystals of cement hydration products which gathered to form ordered and compact microstructures were observed in SEM microscopic morphology. XRD results indicated that the regular-shaped hydration crystals were constructed by complexing and hybridizing.of cement hydration crystals.
Key words:  high-performance concete    graphene oxide    hydration products    microstructure
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528.572  
基金资助: *陕西省科技统筹资源引导项目(2016KTCL01-14); 国家自然科学基金面上项目(21276152)
作者简介:  吕生华:1963年生,博士,教授,博士研究生导师,主要研究方向为氧化石墨烯的制备及应用,水泥基材料的结构与性能 E-mail: lvsh@sust.edu.cn
引用本文:    
吕生华, 孙立, 张佳, 胡浩岩, 雷颖, 侯永刚. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*[J]. CLDB, 2017, 31(23): 78-84.
LU Shenghua, SUN Li, ZHANG Jia, HU Haoyan, LEI Ying, HOU Yonggang. High/Ultra-high Performance Graphene Oxide/Cement-based Composites with Large-scale, Ordered and Compact Flower-like Microstructures. Materials Reports, 2017, 31(23): 78-84.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.010  或          https://www.mater-rep.com/CN/Y2017/V31/I23/78
1 Mo Zongyun, Gao Xiaojian. Research progress on the durability of metakaolin concrete[J].Mater Rev:Rev,2017,31(8):115(in Chinese).
莫宗云,高小建.偏高岭土改性混凝土的耐久性研究进展[J].材料导报:综述篇,2017,31(8):115.
2 Liu Junliang,Xu Jinyu,Ren Weibo,et al.Dynamic mechanical pro-perties of early-strength fiber reinforced concrete at different ages[J].Mater Rev:Res,2016, 30(12):157(in Chinese).
刘俊良,许金余,任韦波,等.纤维早强混凝土不同龄期的动态力学性能[J].材料导报:研究篇,2016,30(12):157.
3 Ngo T T,Park J K,Pyo S,et al.Shear resistance of ultra-high-performance fiber-reinforced concrete [J]. Costruction Building Mater,2017,151:246.
4 Lian Huizhen. Reconsidered on the high performance concrete [J]. China Concrete, 2010(12):8(in Chinese).
廉慧珍.对高性能混凝土的再反思[J]. 混凝土世界,2010(12):8.
5 Wang Dehui, Shi Caijun, Wu Linmei. Research and applications of ultra-high performance concrete (UHPC) in China[J]. Bull Chin Ceram Soc, 2016,35(1):142(in Chinese).
王德辉,史才军,吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报,2016,35(1):142.
6 Chen Baochun, Ji Tao, Huang Qingwei, et al. Review of research on ultra-high performance concrete[J]. J Achitecture Civil Eng,2014,31(3):1(in Chinese).
陈宝春,季韬,黄卿维,等.超高性能混凝土研究综述[J].建筑科学与工程学报,2014,31(3):1.
7 Yu R, Song Q L,Wang X P. Sustainable development of ultra-high performance fibre reinforced concrete (UHPFRC): Towards to an optimized concrete matrix and efficient fibre application[J].J Cleaner Production,2017,162:220.
8 Xu Libin,Dong Yi,Chen Shangwei.Research on the m ixture ratio design of ultra-high perform ance concrete[J].Concrete,2015(1):72(in Chinese).
徐立斌,董艺,陈尚伟. 超高性能混凝土的配合比设计研究[J].混凝土,2015(1):72.
9 Wan Chaojun, Yin Yaliu, Wang Xiaoqian, et al. Preparation of ultra-high performance concrete[J]. Bull Chin Ceram Soc, 2015,34(12):3676(in Chinese).
万朝均,尹亚柳,王小茜, 等. 超高性能混凝土的制备[J].硅酸盐通报,2015,34(12):3676.
10 Qin Xiaochuan,Meng Shaoping. Relationship between mesoscopic freeze-thaw damage and compressive strength of high-strength concrete materials[J]. Mater Rev: Res, 2017,31(1):117(in Chinese).
秦晓川,孟少平.高强混凝土材料细观冻融损伤与抗压强度的关系[J].材料导报:研究篇,2017,31(1):117.
11 Biskri Y, Achoura D, Chelghoum N, et al. Mechanical and durabi-lity characteristics of high performance concrete containing steel slag and crystalized slag as aggregates[J].Construction Building Mater, 2017, 150:167.
12 Nilforoush R,Nilsson M.Experimental evaluation of tensile beha-viour of single cast-in-place anchor bolts in plain and steel fibre-reinforced normal-and high-strength concrete[J].Eng Structures, 2017,147:195.
13 Shin H O, Min K H, Mitchell D. Confinement of ultra-high-performance fiber reinforced concrete columns[J].Compos Structures,2017,176:124.
14 Wijayawardane I S K.Flexural behaviour of glass fibre-reinforced polymer and ultra-high-strength fibre-reinforced concrete composite beams subjected to elevated temperature[J].Adv Structure Eng, 2017, 20(9):1357.
15 Luccioni B, Isla F, Codina R, et al. Effect of steel fibers on static and blast response of high strength concrete[J].Int J Impact Eng, 2017,107:23.
16 Atmaca N,Abbas M L.Effects of nano-silica on the gas permeability, durability and mechanical properties of high-strength lightweight concrete[J].Construction Building Mater,2017, 147:17.
17 Huang Zhengyu, Zu Tianyu. Influence of nano-CaCO3 on ultra high performance concrete [J]. Bull Chin Ceram Soc, 2013, 32(6):1104(in Chinese).
黄政宇,祖天钰. 纳米CaCO3对超高性能混凝土性能影响的研究[J].硅酸盐通报,2013,32(6):1104.
18 Lv S H,Ma Y J, Qiu C C, et al. Effect of graphene oxide nano-sheets of microstructure and mechanical properties of cement compo-sites [J]. Construction Building Mater, 2013, 49:121.
19 Lv S H, Liu J J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J].Construction Building Mater, 2014, 64:231.
20 Lv S H, Deng L J, Yang W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites using copolymerization, for reinforcing and toughening cement composites[J].Cem Concr Compos, 2016,66:1.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[5] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[6] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[7] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[10] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[11] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[12] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[13] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[14] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[15] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed