Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 73-77    https://doi.org/10.11896/j.issn.1005-023X.2017.023.009
  专题栏目:超高性能混凝土及其工程应用 |
超高性能混凝土流变特性及其对纤维分散性的影响*
张倩倩1, 2, 刘建忠1, 2, 周华新1, 2, 光鉴淼1, 2, 张丽辉1, 2, 林玮1, 2, 刘加平2, 3
1 江苏苏博特新材料股份有限公司,南京211103;
2 高性能土木工程材料国家重点实验室,南京211103;
3 东南大学材料科学与工程学院,南京210096
Rheological Properties of Ultra-high Performance Concrete and Its Effect on the Fiber Dispersion Within the Material
ZHANG Qianqian1, 2, LIU Jianzhong1, 2, ZHOU Huaxin1, 2, GUANG Jianmiao1, 2, ZHANG Lihui1, 2, LIN Wei1, 2, LIU Jiaping2, 3
1 Jiangsu Sobute New Materials Co. Ltd., Nanjing 211103;
2 State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 211103;
3 School of Materials Science and Engineering, Southeast University, Nanjing 210096
下载:  全 文 ( PDF ) ( 906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 优异的分散性能是纤维充分发挥增强增韧作用的关键。为了明确高掺量钢纤维在超高性能混凝土(UHPC)中的分散特征并提高纤维的分散性,采用抗压强度、抗弯强度等力学性能试验、混凝土流变仪以及图像分析技术,分别研究了降粘掺合料、钢纤维掺量对UHPC力学性能、流变性能以及纤维分散性能的影响。结果表明:降粘掺合料对UHPC力学性能无明显提升作用,但可显著降低UHPC基体的屈服应力和塑性粘度,同时可降低钢纤维导致的屈服应力和塑性粘度增加幅度;随着纤维掺量的增加,纤维轴向取向系数和有效利用率降低,而降粘掺合料可提高纤维轴向取向系数和有效利用率;UHPC基体的流变性能、纤维分散性能以及力学性能三者密切相关,基体流变参数越小,纤维轴向取向系数越高、纤维有效利用率越高,则UHPC力学性能越好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张倩倩
刘建忠
周华新
光鉴淼
张丽辉
林玮
刘加平
关键词:  超高性能混凝土  钢纤维  降粘掺合料  流变性能  纤维分散    
Abstract: High dispersion is the key to achieve optimum benefits from the fibers for UHPC. In order to understand and improve the fiber dispersion in ultra-high performance concrete (UHPC) with high content of steel fiber (SF), this work employed concrete rheometer, image analysis technology and mechanical properties tests such as compressive strength, flexural strength, to investigate the effects of viscosity-reducing admixture and SF content on UHPC��s mechanical properties, rheological properties and fiber dispersion. Results showed that viscosity-reducing admixture could significantly reduce the UHPC matrix��s yield stress and plastic viscosity, and alleviate the increases of yield stress and plastic viscosity induced by SF addition. Both axial orientation factor and fiber efficiency would decrease by increasing SF content, but increase with the dosage of viscosity-reducing admixture. Our work suggests that the rheological properties, fiber distribution and mechanical properties of UHPC are highly correlated: lower rheological parameters can lead to higher axial orientation factor and higher fiber efficiency, and consequently, higher mechanical properties of the SF-contained UHPC.
Key words:  ultra-high performance concrete    steel fiber    viscosity-reducing admixture    rheological property    fiber dispersion
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家自然科学基金(51578269); 江苏省科技计划青年基金(BK20141012)
作者简介:  张倩倩:女,1986年生,硕士,工程师,主要从事高强混凝土、超高性能混凝土流变性能及制备技术等研究 E-mail:zhangqianqian@cnjsjk.cn
引用本文:    
张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
ZHANG Qianqian, LIU Jianzhong, ZHOU Huaxin, GUANG Jianmiao, ZHANG Lihui, LIN Wei, LIU Jiaping. Rheological Properties of Ultra-high Performance Concrete and Its Effect on the Fiber Dispersion Within the Material. Materials Reports, 2017, 31(23): 73-77.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.009  或          https://www.mater-rep.com/CN/Y2017/V31/I23/73
1 Blais P Y, Couture M. Precast, prestressed pedestrian bridge-world’s first reactive powder concrete structure[J]. PCIJ, 1999, 44(5): 60.
2 Resplendino J. State of the art of design and construction of UHPFRC structures in France[C]∥3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2012: 27.
3 Wang C, Yang C H, Liu F, et al. Preparation of ultra-high performance concrete with common technology and materials[J]. Cem Concr Compos, 2012, 34(4):538.4 Yazlcl H, YardImcI M Y, AydIn S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under diffe-rent curing regimes[J]. Constr Build Mater, 2009, 23(3):1223.
5 Zhang Y, Sun W, Liu S, et al. Preparation of C200 green reactive powder concrete and its static-dynamic behaviors[J]. Cem Concr Compos, 2008, 30(9):831.
6 Gr?ger J, Viet Tue N, Wille K. Bending behaviour and variation of flexural parameters of UHPFRC[C]∥3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2012:419.
7 Yang I H, Joh C, Kim B S. Structural behavior of ultra high performance concrete beams subjected to bending[J]. Eng Struct, 2010, 32(11):3478.
8 Empelmann M, Teutsch M, Steven G. Improvement of the post fracture behaviour of UHPC by fibres[C]∥Second International Symposium on Ultra High Performance Concrete. Kassel, 2008:177.
9 Lohaus L, Elsmeier K. Fatigue behaviour of plain and fibre reinforced ultra-high performance concrete[C]∥3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, 2012: 631.
10 Wille K, Parra-Montesinos G J. Effect of beam size, casting me-thod, and support conditions on flexural behavior of ultra-high-performance fiber-reinforced concrete[J]. ACI Mater, 2012, 109:379.
11 Pansuk W, Sato H, Sato Y, et al. Tensile behaviors and fiber orientation of UHPC[C]∥2nd International Symposium on Ultra High Performance Concrete. Kassel, 2008:161.
12 Kim S W, Kang S T, Park J J, et al. Effect of filling method on fibre orientation & dispersion and mechanical properties of UHPC[C]∥2nd International Symposium on Ultra High Performance Concrete. Kassel, 2008: 185.
13 St?hli P, Custer R, Mier J G M V. On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC[J]. Mater Struct, 2008, 41(1):189.
14 Gettu R, Gardner D R, Saldívar H, et al. Study of the distribution and orientation of fibers in SFRC specimens[J]. Mater Struct, 2005, 38(1):31.
15 Li M, Li V C. Rheology, fiber dispersion, and robust properties of engineered cementitious composites[J]. Mater Struct, 2013, 46:405.
16 Meng W, Khayat K H. Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar[J]. Compos Part B Eng, 2017, 117:26.
17 Boulekbache B, Hamrat M, Chemrouk M, et al. Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material[J]. Constr Build Mater, 2010, 24(9):1664.
18 Liu J, Li C, Du Z, et al. Characterization of fiber distribution in steel fiber reinforced cementitious composites with low water-binder ratio[J]. Indian Eng Mater Sci, 2011, 18(6):449.
19 Dupont D, Vandewalle L. Distribution of steel fibres in rectangular sections[J]. Cem Concr Compos, 2005, 27(3):391.
20 刘建忠, 张丽辉, 李长风, 等. 聚乙烯醇纤维在水泥基复合材料中的分散性表征及调控[J]. 硅酸盐学报, 2015, 43(8):1061.
21 Heirman G, Vandewalle L, Gemert D V, et al. Integration approach of the couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer[J]. Non-Newtonian Fluid Mech, 2008, 150(2):93.
22 Liu J, Wang K, Zhang Q, et al. Influence of superplasticizer dosage on the viscosity of cement paste with low water-binder ratio[J]. Constr Build Mater, 2017, 149:359.
23 Martinie L, Rossi P, Roussel N. Rheology of fiber reinforced cementitious materials: Classification and prediction[J]. Cem Concr Res, 2010, 40(2):226.
24 Nguyen T L H, Roussel N, Coussot P. Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid[J]. Cem Concr Res, 2006, 36(10):1789.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[3] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[4] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[5] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[6] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[7] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[8] 何印章, 熊坤, 张久鹏, 李哲, 李岩. 基于SARA组分调和沥青流变性能、粘附性自愈合性能研究[J]. 材料导报, 2024, 38(22): 24050184-8.
[9] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[10] 仲小凡, 王爱国, 于乐乐, 刘开伟, 张祖华, 徐志杰, 孙道胜. 缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展[J]. 材料导报, 2024, 38(19): 23070036-9.
[11] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[12] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[13] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[14] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[15] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed