Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23100032-6    https://doi.org/10.11896/cldb.23100032
  无机非金属及其复合材料 |
流变与浇筑方式对UHPC纤维分散和取向的影响
黄煌煌1,2, 滕乐3,*, 高小建4, 刘正楠5
1 湖北隆中实验室,湖北 襄阳 441000
2 武汉理工大学材料科学与工程学院,武汉 430070
3 东南大学材料科学与工程学院,南京 210000
4 哈尔滨工业大学土木工程学院,哈尔滨 150090
5 兰州交通大学土木工程学院,兰州 730070
Effect of Rheology and Casting Method on Fiber Dispersion and Orientation of UHPC
HUANG Huanghuang1,2, TENG Le3,*, GAO Xiaojian4, LIU Zhengnan5
1 Hubei Longzhong Laboratory, Xiangyang 441000, Hubei, China
2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
3 School of Materials Science and Engineering, Southeast University, Nanjing 210000, China
4 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
5 School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 3056KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了浆体流变与浇筑方式对超高性能混凝土(UHPC)纤维分散和取向的影响。结果表明,对于流动度为(200±10) mm的可流动UHPC,塑性黏度提高时,传统浇筑、30°斜槽、流动诱导三种浇筑方式得到的纤维分散系数与纤维取向系数均降低;而对于流动度为(270±10) mm的自密实UHPC,塑性黏度提高可使纤维分散系数提高25%~43%,30°斜槽与流动诱导两种浇筑方式可使纤维取向系数提高20%。给定流动度与塑性黏度时,流动诱导浇筑得到的抗弯强度和韧性最高,30°斜槽浇筑的次之,传统浇筑方法最低;随塑性黏度提高,流动诱导浇筑可使UHPC试件的抗弯强度和韧性分别提升55%和70%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄煌煌
滕乐
高小建
刘正楠
关键词:  UHPC  流变特性  浇筑方式  纤维分散  纤维取向  抗弯性能    
Abstract: This work investigated the effect of suspending mortar rheology and casting method on fiber dispersion and orientation of UHPC. The test results showed that the fiber dispersion coefficient and fiber orientation coefficient decreased with the increase of plastic viscosity for flowable UHPC with (200±10) mm mini-slump flow and prepared by conventional, 30° chute, and flow-induced casting methods. On the other hand, the fiber dispersion coefficient was increase by 25%—43% with the increase of plastic viscosity for self-consolidating UHPC with (270±10) mm mini-slump flow. The increase ratio for fiber orientation coefficient was 20% when 30° chute and flow-induced casting methods were used. For a given mini-slump flow and plastic viscosity, UHPC prepared by flow-induced casting method showed the greatest flexural strength and toughness, followed by 30° chute, while the conventional casting methods led to the lowest flexural strength and toughness. With the increase of plastic viscosity, flexural strength and toughness of UHPC casted by flow-induced method can be enhanced by 55% and 70%, respectively.
Key words:  UHPC    rheology    casting method    fiber dispersion    fiber orientation    flexural performance
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(52202027);湖北隆中实验室自主创新研究项目(2022ZZ-37);武汉理工大学自主创新研究基金(WUT:2022IVA176)
通讯作者:  * 滕乐,东南大学材料科学与工程学院博士后。2015年兰州交通大学土木工程专业本科毕业,2017年西南交通大学桥梁与隧道工程专业硕士毕业,2022年美国密苏里科技大学土木工程专业博士毕业。目前主要从事混凝土强韧化与外加剂技术等方面的研究工作。发表论文20余篇,包括 Cement and Concrete Research、Cement and Concrete Composites、Composites Part B: Engineering等。 101013637@seu.edu.cn   
作者简介:  黄煌煌,武汉理工大学材料科学与工程学院讲师。分别于2016年、2021年在哈尔滨工业大学土木工程专业本科、博士毕业,目前在武汉理工大学材料科学与工程学院从事教学科研工作,主要研究方向为超高性能混凝土材料。发表论文20余篇,包括Cement and Concrete Research、Cement and Concrete Composites、Construction and Building Materials等。
引用本文:    
黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
HUANG Huanghuang, TENG Le, GAO Xiaojian, LIU Zhengnan. Effect of Rheology and Casting Method on Fiber Dispersion and Orientation of UHPC. Materials Reports, 2024, 38(24): 23100032-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100032  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23100032
1 De Larrard F, Sedran T. Cement and Concrete Research, 1994, 24(6), 997.
2 Habel K, Viviani M. Cement and Concrete Research, 2006, 36(7), 1362.
3 Graybeal B, Brühwiler E, Kim B, et al. Journal of Bridge Engineering, 2020, 25(11), 4020094.
4 Nie J, Li C X, Qian G P, et al. Materials Reports, 2021, 35(4), 4042 (in Chinese).
聂洁, 李传习, 钱国平, 等. 材料导报, 2021, 35(4), 4042.
5 Yuan M, Zhu H L, Yan D H, et al. Materials Reports, 2023, 37(16), 22010230(in Chinese).
袁明, 朱海乐, 颜东煌, 等. 材料导报, 2023, 37(16), 22010230.
6 Mu R, Li H, Wang X W, et al. Journal of Building Materials, 2015, 18(3), 387 (in Chinese).
慕儒, 李辉, 王晓伟, 等. 建筑材料学报, 2015, 18(3), 387.
7 Gou H X, Zhu H B, Zhou H Y, et al. Journal of the Chinese Ceramic Society, 2020, 48(11), 1756 (in Chinese).
苟鸿翔, 朱洪波, 周海云, 等. 硅酸盐学报, 2020, 48(11), 1756.
8 Swamy R N. Matériaux et Construction, 1975, 8(3), 235.
9 Boulekbache B, Hamrat M, Chemrouk M, et al. Construction and Building Materials, 2010, 24(9), 1664.
10 Meng W, Khayat K H. Composites Part B: Engineering, 2017, 117, 26.
11 Lin Z W, Chen H, Shui Z H, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 2010 (in Chinese).
林泽文, 陈浩, 水中和, 等. 硅酸盐通报, 2019, 38(7), 2010.
12 Zhang Q Q, Liu J Z, Zhou H X, et al. Materials Reports, 2017, 31(23), 73 (in Chinese).
张倩倩, 刘建忠, 周华新, 等. 材料导报, 2017, 31(23), 73.
13 Roussel N. Materials Structure Construction, 2006, 39, 501.
14 Teng L, Meng W, Khayat K H. Cement and Concrete Research, 2020, 138, 106222.
15 Wang R, Gao X, Huang H, et al. Construction and Building Materials, 2017, 144, 65.
16 Wang R, Gao X, Zhang J, et al. Construction and Building Materials, 2018, 160, 39.
17 Teng L, Huang H, Khayat K H. Cement and Concrete Composites, 2022, 127, 104395.
[1] 蒋修明, 丁湛, 孙超, 岳磊, 栗慧峰, 栗培龙. 生物基树脂改性沥青流变特性评价及体系融合行为[J]. 材料导报, 2024, 38(2): 22040409-7.
[2] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[3] 刘雄飞, 侯冠宇, 蔡华崇, 李之建. 协同连续布筋增韧喷射3D打印混凝土的抗弯性能[J]. 材料导报, 2024, 38(1): 22090102-6.
[4] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[5] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[6] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[7] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[8] 黄振华, 李翠平, 李雪, 阮竹恩, 王少勇. 不同物料配比充填料浆流变性的体积浓度效应[J]. 材料导报, 2023, 37(22): 22050235-9.
[9] 杨俊, 任伟, 冷景晨, 张中亚, 邹杨, 周建庭, 胡天祥. 超高性能混凝土预应力锚固齿块承压性能研究[J]. 材料导报, 2023, 37(18): 22010146-9.
[10] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[11] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[12] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[13] 张雨, 铁生年, 汪长安. 改性纳米碳粉芒硝基纳米流体强化传热[J]. 材料导报, 2022, 36(18): 20100294-7.
[14] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[15] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed