Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 20100294-7    https://doi.org/10.11896/cldb.20100294
  无机非金属及其复合材料 |
改性纳米碳粉芒硝基纳米流体强化传热
张雨1, 铁生年1,*, 汪长安1,2
1 青海大学青海省先进材料与应用技术重点实验室,西宁 810016
2 清华大学材料学院,北京 100084
Enhanced Heat Transfer by Modified Nano-carbon Powder in Mirabilite-based Nanofluid
ZHANG Yu1, TIE Shengnian1,*, WANG Chang'an1,2
1 Key Laboratory of Advanced Materials and Applied Technology for Qinghai Province, Qinghai University,Xining 810016, China
2 School of Materials, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 9464KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以纳米碳粉为原料,浓酸及氨水、乙醇等为改性剂,制备了含有亲水性基团的改性纳米碳粉,并通过两步法制备出纳米碳粉芒硝基纳米流体。结果表明:与未改性纳米碳粉相比,改性纳米碳粉表面均含有亲水性基团,能稳定分散在芒硝基纳米流体中。芒硝基纳米流体温度越低,粘度对体积分数变化的感知能力越强;纳米碳粉体积分数越低,粘度对温度变化的感知能力越弱。40 ℃下,添加0.25%(体积分数)改性纳米碳粉的芒硝基纳米流体,相比于未添加纳米颗粒的芒硝基相变材料,其导热系数平均增长11.93%。通过H-C模型可知,改性纳米碳粉在芒硝基纳米流体中的分散稳定性优于未改性纳米碳粉。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雨
铁生年
汪长安
关键词:  改性纳米碳粉  芒硝基纳米流体  流变特性  导热系数    
Abstract: The modified nano-carbon powder containing hydrophilic groups was prepared by utilizing the nano-carbon powder as raw material and the concentrated acid, ammonia and ethanol as modifiers. Then, the nano-carbon powder mirabilite-based nano fluid was obtained through a two-step strategy. The test results indicate that the surface of the modified nano-carbon powder contains hydrophilic groups as compared with the unmodified material, which ensures the stable dispersion in the Glauber's salt-based nanofluid. In addition, it is found that the lower the temperature of Glauber's salt-based nanofluid, the higher the sensitivity of viscosity to volume fraction changes. In contrast, the lower the volume fraction of nano-carbon powder, the lower the sensitivity of viscosity to temperature changes. As a result, the thermal conductivity of the mirabilite-based phase-change material increased by 11.93% on average after adding the 0.25vol% modified nano-carbon powder under 40 ℃. The H-C model revealed that the dispersion stability of the modified nano-carbon powder in mirabilite-based nanofluid is better than that of the unmodified sample.
Key words:  modified nano-carbon powder    mirabilite-based nanofluid    rheological property    thermal conductivity
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TB34  
基金资助: 青海省自然基金(2020-ZJ-909);材料复合新技术国家重点实验室(武汉理工大学)开放基金(2020-KF-1)
通讯作者:  *tieshengnian@163.com   
作者简介:  张雨,2018年6月毕业于安阳工学院,获得学士学位。现为青海大学化工学院硕士研究生,在铁生年教授的指导下进行研究。目前主要研究领域为相变材料。铁生年,青海大学教授、硕士研究生导师,享受国务院政府特殊津贴。青海大学新能源光伏产业研究中心常务副主任、科技委员会委员,青海省先进材料与应用技术省级重点实验室主任。国家留学基金委派遣至新西兰奥克兰大学高级访问学者,青海省委派遣的西部之光访问学者,主持完成国家863项目2项,在国内外学术期刊上发表论文100余篇,申请国家发明专利30项,其中授权18项。现阶段带领新能源材料高值化教学和科研团队,为推动青海省新能源光伏产业开发高附价值的产品走产学研道路,主要从事新型无机合成材料,粉体材料加工,新能源材料和环境保护材料研究。
引用本文:    
张雨, 铁生年, 汪长安. 改性纳米碳粉芒硝基纳米流体强化传热[J]. 材料导报, 2022, 36(18): 20100294-7.
ZHANG Yu, TIE Shengnian, WANG Chang'an. Enhanced Heat Transfer by Modified Nano-carbon Powder in Mirabilite-based Nanofluid. Materials Reports, 2022, 36(18): 20100294-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100294  或          http://www.mater-rep.com/CN/Y2022/V36/I18/20100294
1 Wang C Y, Yan Q Y, Sun X Y, et al. New Chemical Materials,2019,47(S1),67(in Chinese).
王晨羽,闫全英,孙相宇,等.化工新型材料,2019,47(S1),67.
2 Kibria M A, Anisur M R, Mahfuz M H, et.al. Energy Conversion & Management, 2015, 95, 69.
3 Kenisarin M, Mahkamov K. Renewable & Sustainable Energy Reviews, 2007, 11, 1913.
4 Xiao X, Zhang P, Li M. Energy Conversion and Management, 2013, 73, 86.
5 Shon J, Kim H, Lee K. Applied Energy, 2014, 113, 680.
6 Soni V, Kumar A, Jain V K. Renewable Energy, 2018, 127, 587.
7 Oró E, Gracia A D, Castell A, et al. Apply Energy,2012,99(6),513.
8 Zhao C Y, Lu W, Tian Y. Solar Energy, 2010, 84(8), 1402.
9 Feng G, Xu X, Li G, et al. Material Research Innovations,2015,19(5),983.
10 Li H L, Ji X, Leng C B, et al. Acta Materiae Compositae Sinica,2016,33(12),2941(in Chinese).
李海丽,季旭,冷从斌,等. 复合材料学报, 2016,33(12),2941.
11 Li M. Applied Energy,2013, 106, 25.
12 Liu X, Tie J, Tie S N. Journal of Synthetic Crystals, 2015, 44(11),3072(in Chinese).
柳馨,铁健,铁生年. 人工晶体学报, 2015, 44(11),3072.
13 Niu H Y, Cai Y Q, Shi Y L, et al. Analytica Chimica Acta, 2007, 594(1), 81.
14 Ghaedi M, Khajehsharifi H, Yadkuri A H, et al. Toxicological & Environmental Chemistry, 2012,94 (5), 873.
15 Dong M, Ma Y, Zhao E, et al. Microchimica Acta, 2009,165(1), 123.
16 Ngo Q H. IEEE/ASME Transactions on Mechatronics,2012,17,201.
17 Song X Y. Functionalization and application of multi-walled carbon nanotubes.Master's Thesis, Dalian University of Technology, China,2013(in Chinese).
宋晓瑜.多壁碳纳米管的功能化及应用.硕士学位论文, 大连理工大学,2013.
18 Wang S H, Hou C Y, Ma G Z, et al. Thermosetting Resin, 2018,33(6),36(in Chinese).
王少辉,侯彩英,马国章,等. 热固性树脂, 2018,33(6),36.
19 Jiang Z P. Study on preparation and heat storage performances of Glau-ber's salt-based composites phase change materials in Qinghai-Tibet pla-teau's solar greenhouse. Master's Thesis, Qinghai University, China,2017(in Chinese).
蒋自鹏.芒硝基相变储能材料制备及其模拟温室应用研究.硕士学位论文, 青海大学,2017.
20 Wang J, Zhai Y L, Ma M Y, et al. Acta Materiae Compositae Sinica, 2020,37(7),1721(in Chinese).
王江,翟玉玲,马明琰,等. 复合材料学报, 2020,37(7),1721.
21 Wang S H, Ma G Z, Hou C Y, et al. Polyurethane Industry, 2019,34(5),13(in Chinese).
王少辉,马国章,侯彩英,等. 聚氨酯工业, 2019,34(5),13.
22 Zhou L. Preparation and thermal properties of propylene glycol-based graphene nanofluids. Master's Thesis, Southwest Petroleum University, China,2017(in Chinese).
周露.丙二醇基石墨烯纳米流体的制备与热性能研究.硕士学位论文, 西南石油大学,2017.
23 Luo Z Y, Wu Y Q, Hu Q, et al. Journal of Chemical Engineering of Chinese Universities, 2015,29(1),35(in Chinese).
骆仲泱,吴越琼,胡倩,等. 高校化学工程学报, 2015,29(1),35.
[1] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[2] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[3] 范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
[4] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[5] 宋一龙, 赵芳, 李志尊, 程兆刚, 黄红军. 热处理温度对SiO2微纳纤维形貌及隔热性能的影响[J]. 材料导报, 2022, 36(12): 21030010-5.
[6] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[7] 贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
[8] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[9] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[10] 陈玉星, 王天浩, 黎晓杰, 付海, 何力, 龚维. LDH-热膨胀微胶囊的合成及发泡EVA复合材料的综合性能[J]. 材料导报, 2021, 35(4): 4194-4199.
[11] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[12] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[13] 赵立晓, 王鹏刚, 王兰芹, 赵铁军, 光文涛. 混凝土内部温湿度响应参数分析:水分扩散系数与导热系数[J]. 材料导报, 2021, 35(12): 12075-12080.
[14] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[15] 张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁. 特殊粒径分布球形Ni粉的制备及SLM工艺性能研究[J]. 材料导报, 2020, 34(6): 6114-6119.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed