Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 20100163-9    https://doi.org/10.11896/cldb.20100163
  无机非金属及其复合材料 |
微波诱导催化反应在环境净化中的应用研究进展
吕秀娟1, 唐晓龙1,2,*, 易红宏1,2, 赵顺征1,2, 任晨阳1
1 北京科技大学能源与环境工程学院,北京 100083
2 工业典型污染物资源化处理北京市重点实验室,北京 100083
Applying Microwave-induced Catalytic Reaction to Environmental Purification: a Review
LYU Xiujuan1, TANG Xiaolong1,2,*, YI Honghong1,2, ZHAO Shunzheng1,2, REN Chenyang1
1 School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
下载:  全 文 ( PDF ) ( 11201KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 催化净化法是环境污染物的主要净化技术之一,而微波场具有波动性、高频性、热特性和非热特性四大基本特征,因此微波诱导催化反应在改善环境质量方面具有至关重要的作用。随着科研人员对微波技术以及催化技术不断深入的研究,开发具有优异吸波性能与催化活性的多功能材料成为研究的重点。
根据吸波材料转化微波的形式可以将吸波材料分为介电损耗型、电阻损耗型和磁损耗型。吸波材料的吸波性能受到材料组成、表面构型、孔径结构等多种因素的影响。近年来,研究者们从材料的匹配特性与衰减特性出发,不断改进吸波材料合成方法,并取得了丰硕的成果,在不断改善材料吸波性能的同时,充分发挥其在微波诱导催化反应中的作用,提高了能源利用率以及环境污染物的降解速率。
吸波材料在微波的作用下会产生热点效应以及放电效应。微波诱导催化反应将常规热场改为微波热场,可以在较低的宏观温度下实现材料的迅速升温,达到优异的催化效果。金属材料在微波场中会诱发微波放电,放电过程会产生热点效应、等离子体效应以及光催化效应,对污染物的去除具有重要作用。但由于微波诱导催化的反应过程较为复杂,当前的研究难点为区分热点效应与放电效应的影响、明确微波诱导催化反应的反应路径。近年来研究者们开发了一系列具有优异吸波性能以及催化效能的催化剂,将微波诱导催化反应应用于废水废气的净化处理技术,具有反应速率快、处理效率高等优点。
本文主要介绍了材料的吸波原理,阐述了材料吸波性能的改进、微波热点效应和微波放电效应在污染物去除方面的应用,并对微波诱导催化反应今后的发展方向进行了讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕秀娟
唐晓龙
易红宏
赵顺征
任晨阳
关键词:  催化  微波  热点效应  放电  等离子体  吸波材料  环境    
Abstract: Catalytic purification has been developed to be a main technology involving with the removal of environmental pollutants. Microwave (MW) radiation with excellent performances of volatility, high frequency, thermal and non-thermal characteristics has caused widely attention. Therefore, MW-induced catalytic reactions play a vital role in improving environmental quality. With the continuous in-depth research of MW radiation and catalytic technology, the development of multifunctional materials with excellent MW absorbing performance and catalytic activity has become the focus of studies.
According to the way of transforming the MW, wave-absorbing materials can be divided into three types, including dielectric loss, resistance loss and magnetic loss.The absorbing performance of the wave-absorbing materials is affected by various factors such as element composition, surface configuration and pore structure. In recent years, researchers have been improving the synthetic methods of wave-absorbing materials from the matching and attenuation characteristics, and have achieved substantial progress in enhancing the MW absorbing properties of mate-rials, and making full use of MW-induced catalytic reactions to improve the energy utilization rate as well as the degradation rate of environmental pollutants.
Wave-absorbing materials will produce hot spot effect and discharge effect in the MW field. The MW-induced catalytic reaction changes the conventional thermal field to MW heating, which can realize the rapid temperature rise of the material at a lower environment temperature and achieve excellent catalytic performance. Metal materials can induce MW discharge in the MW field, and the discharge process will produce thermal effect, plasma effect and photocatalytic effect, which plays a crucial role in pollutant removal. However, since the reaction process of MW-induced cata-lysis is complicated, current studies have focused on distinguishing the influence of heat spot effect and discharge effect and clarifying the reaction pathway of MW-induced catalysis. Over the past years, a variety of catalysis with outstanding wave-absorbing and catalytic performances has been developed, and applied the MW-induced catalytic reaction to the purification treatment technology of waste water and exhaust gas, which has the advantages of fast reaction rate and high treatment efficiency.
This paper mainly introduces the principle of MW absorption of materials, expounds the improvement of MW absorption properties of materials and the application of MW hot spot effect and discharge effect in pollutant removal, and discusses the future development direction of MW-induced catalytic reactions.
Key words:  catalytic    microwave    hot spot effect    discharge    plasma    wave-absorbing material    environment
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  X505  
  TB34  
基金资助: 国家自然科学基金(21876010)
通讯作者:  *txiaolong@126.com   
作者简介:  吕秀娟,2018年6月毕业于唐山学院,获得工学学士学位。现为北京科技大学能源与环境工程学院硕士研究生,在唐晓龙教授的指导下进行研究。目前主要研究领域为微波场中挥发性有机污染物的去除。唐晓龙,教授/博士研究生导师,教育部新世纪优秀人才。现任北京科技大学能源与环境工程学院副院长、“大气污染控制与资源化”学术梯队负责人。2003年于昆明理工大学获硕士学位,2006年于北京理工大学(清华联合培养)获博士学位,长期以来主要从事烟气脱硫脱硝技术、工业废气资源化、环境功能材料研究与开发等工作。发表SCI论文180余篇,出版专著1部,参编论著3部,申请发明专利 50 余项,已授权30项。
引用本文:    
吕秀娟, 唐晓龙, 易红宏, 赵顺征, 任晨阳. 微波诱导催化反应在环境净化中的应用研究进展[J]. 材料导报, 2022, 36(18): 20100163-9.
LYU Xiujuan, TANG Xiaolong, YI Honghong, ZHAO Shunzheng, REN Chenyang. Applying Microwave-induced Catalytic Reaction to Environmental Purification: a Review. Materials Reports, 2022, 36(18): 20100163-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100163  或          http://www.mater-rep.com/CN/Y2022/V36/I18/20100163
1 Subrahmanyam C, Renken A, Kiwi-Minsker L. Applied Catalysis B: Environmental, 2006, 65, 157.
2 Zhou Y L. Experimental and mechanism research of microwave-induced metal discharge on the degradation of biomass tar. Ph.D. Thesis, Shandong University, China, 2018(in Chinese).
周玉立. 微波诱导金属放电强化生物质焦油裂解试验与机理研究. 博士学位论文, 山东大学, 2018.
3 Yang Z Y. Studies of adsorption-desorption/catalytic oxidation of absor-bing materials under microwave radiation for purification of toluene vapor. Ph.D. Thesis, University of Science and Technology Beijing, China, 2019(in Chinese).
杨仲禹. 微波强化吸波材料吸-脱附/催化氧化气相甲苯研究. 博士学位论文, 北京科技大学, 2019.
4 García M C, Mora M, Esquivel D, et al. Chemosphere,2017,180,239.
5 Wang W L, Wang B, Sun J, et al. RSC Advances,2016,6(58),52974.
6 Wang W L, Zhao C, Sun J, et al. Energy, 2015, 87, 678.
7 Li J, Ng D H L, Song P, et al. Materials Science and Engineering: B, 2015, 194, 1.
8 Baghurst D R, Mingos D M P. Journal of the Chemical Society, Chemical Communications, DOI:10.1039/c39920000674.
9 Li F, Zhang M, Wang X D. The Chinese Journal of Proces Engineering, 2007, 7(1), 186(in Chinese).
李钒, 张梅, 王习东. 过程工程学报, 2007, 7(1), 186.
10 Ren C Y, Yi H H, Tang X L, et al. Modern Chemical Industry, 2019, 39(11), 20(in Chinese).
任晨阳,易红宏,唐晓龙, 等. 现代化工, 2019, 39(11), 20.
11 Liu Z. Research on the heating effects of metal discharge during microwave-induced pyrolysis of e-waste. Master's Thesis, Shandong Univer-sity, China, 2012(in Chinese).
刘振. 微波诱导热解电子废弃物过程中金属放电热效应研究. 硕士学位论文, 山东大学, 2012.
12 Ma Q L. Research on CH4-CO2 reforming effects caused by microwave-induced metal discharge. Master's Thesis, Shandong University, China, 2014(in Chinese).
马青峦. 微波诱导金属放电现象对CH4-CO2气体重整作用的研究. 硕士学位论文, 山东大学, 2014.
13 Wang W L, Fu L J, Sun J, et al. IEEE Transactions on Plasma Science, 2017, 45(8), 2235.
14 Sun J, Wang W L, Yue Q Y, et al. Applied Energy, 2016, 175, 141.
15 Peng Y D. Studies on microwave heating mechanism and sintering beha-vior of powder metallurgy materials. Ph.D.Thesis, Central South University, China, 2011(in Chinese).
彭元东. 微波加热机制及粉末冶金材料烧结特性研究. 博士学位论文, 中南大学, 2011.
16 Liu S H, Liu J M, Dong X L. Electromagnetic wave shielding and absor-bing materials, Chemical Industry Press, China, 2007(in Chinese).
刘顺华, 刘军民, 董星龙. 电磁波屏蔽及吸波材料, 化学工业出版社, 2007.
17 Garcia-Costa A L, Zazo J A, Rodriguez J J, et al. Applied Catalysis B: Environmental, 2017, 218, 637.
18 Jiang H T. Scientific and Technological Innovation,2019,24,180(in Chinese).
姜浩田. 科学技术创新, 2019, 24, 180.
19 Shen Z Z, Chen J H, Li B, et al. Journal of Alloys and Compounds, 2020, 815, 1.
20 Zhu B, Cui Y, Lv D F, et al. Materials Letters, 2020, 263, 1.
21 Singh S, Kumar A, Agarwal S, et al. Journal of Magnetism and Magnetic Materials, 2020, 503, 1.
22 Cheng J B, Zhao H B, Li M E, et al. Materials China, 2019, 38(9), 897(in Chinese).
程金波, 赵海波, 李蒙恩, 等. 中国材料进展, 2019, 38(9), 897.
23 Lu M M, Cao W Q, Shi H L, et al. Journal of Materials Chemistry A, 2014, 2(27), 10540.
24 Pang H F, Abdalla A M, Sahu R P, et al. Journal of Materials Science, 2018, 53(24), 16288.
25 Chabot V, Higgins D, Yu A P, et al. Energy & Environmental Science, 2014, 7(5), 1564.
26 Kong L, Yin X W, Xu H L, et al. Carbon, 2019, 145, 61.
27 Chen J, Meng P Y, Wang M L, et al. Journal of Alloys and Compounds, 2016, 679, 335.
28 Zhang S L, Jiao Q Z, Zhao Y, et al. Journal of Materials Chemistry A, 2014, 2(42), 18033.
29 Alam R S, Moradi M, Nikmanesh H, et al. Journal of Magnetism and Magnetic Materials, 2016, 402, 20.
30 Yu Z T, Wang Y P, Jiang L, et al. RSC Advances,2019,9(34),19729.
31 Xie Q L, Li S S, Gong R C, et al. Applied Catalysis B: Environmental, 2019, 243,455.
32 Yu Z T, Jiang L, Wang Y P, et al. Journal of Cleaner Production, 2020, 255, 1.
33 Wei Z S, Zeng G H, Xie Z R, et al. Journal of Environmental Enginee-ring, 2010, 136(12), 1403.
34 Jin Q H, Dai S S, Huang K M. Microwave chemical, Science Press, China, 1999(in Chinese).
金钦汉, 戴树珊, 黄卡玛. 微波化学, 科学出版社, 1999.
35 Garcia-Costa A L, Lopez-Perela L, Xu X Y, et al. Environmental Science and Pollution Research, 2018, 25(28), 27748.
36 Chen J, Xue S, Song Y T, et al. Journal of Hazardous Materials, 2016, 310, 226.
37 Xu D Y, Zhang Y S, Cheng F,et al. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 376.
38 Yin J Y, Cai J J, Yin C, et al. Journal of Environmental Chemical Engineering, 2016, 4(1), 958.
39 Xu W T, Zhou J C, Li H, et al. Fuel Processing Technology, 2014, 127, 1.
40 Liu Z L, Meng H L, Li C, et al. Journal of Environmental Engineering, 2020, 146(4), 1.
41 Wei Z S, Luo Y W, Li B R, et al. Journal of Industrial and Engineering Chemistry, 2015, 24, 315.
42 Yi H H, Yang Z Y, Tang X L, et al. Chemical Engineering Journal, 2018, 333, 554.
43 Yang Z Y, Yi H H, Tang X L, et al. Jornal of Hazardous Materials, 2019, 373, 321.
44 Chen J N, Xu W T, Zhu J, et al. Applied Catalysis B: Environmental, 2020, 268, 1.
45 He Z M, Wang C, Chen C S. Journal of Nanoscience and Nanotechnology, 2020, 20(8), 4971.
46 Wang Y, Wang Y, Yu L, et al. Chemical Engineering Journal, 2019, 368, 115.
47 Wang Y, Yu L, Wang R T, et al. Journal of Colloid and Interface Science, 2020, 564, 392.
48 Wang Y, Wang Y, Yu L, et al. Chemical Engineering Journal, 2020, 390, 1.
49 Liu S. Preparation of monolithic molecular sieve-based catalysts and study on microwave catalytic combustion of VOCs. Master's Thesis, Xi'an University of Architecture and Technology, China, 2020(in Chinese).
刘双. 整体式分子筛基催化剂制备及微波催化燃烧VOCs特性研究. 硕士学位论文, 西安建筑科技大学, 2020.
50 Zhang T T. Selection of honeycomb catalyst carriers and microwave catalytic combustion of gaseous toluene. Master's Thesis, Xi'an University of Architecture and Technology, China, 2020(in Chinese).
张婷婷. 蜂窝催化剂载体优选及微波催化燃烧甲苯特性研究. 硕士学位论文, 西安建筑科技大学, 2020.
51 Chen J N. Study on highly effective direct decomposition of H2S into H2 and S by microwave catalysis and its microwave catalytic effects. Master's Thesis, Xiangtan University, China, 2020(in Chinese).
陈佳楠. 微波催化高效直接分解H2S制H2和S及其微波催化效应研究. 硕士学位论文, 湘潭大学, 2020.
52 Zhou Y L, Wang W L, Sun J, et al. Energy, 2017, 126, 42.
53 Sun J, Wang Q, Wang W L, et al. Energy, 2018, 155, 815.
54 Xue C. Study on discharge and catalysis during the process of microwave-assisted wet air oxidation. Master's Thesis, Shandong University, China, 2019(in Chinese).
薛超. 微波辅助湿式氧化过程的放电和催化效应研究. 硕士学位论文, 山东大学, 2019.
55 Wang Y C. Research on preparation and properties of cabon-encapsulated metal nonoparticles based on microwave-induced metal discharge. Master's Thesis, Shandong University, China, 2019(in Chinese).
王宜灿. 基于微波诱导金属放电的碳包覆金属纳米颗粒制备及性能研究. 硕士学位论文, 山东大学, 2019.
56 Hussain Z, Khan K M, Hussain K. Journal of Analytical and Applied Pyrolysis, 2010, 89(1), 39.
57 Zhou Y L, Wang W L, Sun J, et al. Applied Thermal Engineering, 2017, 125, 386.
58 Liu H Y, Yang J B, Qiao X L, et al. Energy & Fuels,2020,34(4),4384.
59 Feng Y K, Wang W L, Wang Y C, et al. Waste and Biomass Valorization, 2019, 10(12), 3921.
60 Sun J, Wang Q, Wang W L, et al. Fuel, 2018, 234, 1278.
[1] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[2] 赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
[3] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[4] 刘泊天, 于翔天, 张静静, 姚子洋, 高鸿, 邢焰. 航天器舱外应用材料服役寿命末期耐辐射损伤机制研究[J]. 材料导报, 2022, 36(Z1): 20070234-4.
[5] 李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
[6] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[7] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[8] 常娜, 陈彦如, 谢锋, 王海涛. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[9] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[10] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[11] 李博文, 刘洋, 李宗霖, 齐佳敏, 谭聪, 何莹, 仇浩. 生物炭对土壤酶活性影响的机理研究进展[J]. 材料导报, 2022, 36(7): 20060202-6.
[12] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[13] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[14] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[15] 陈如冰, 胡永琴, 陈美珠, 安佳, 吕颖, 刘玉菲, 李东玲. 基于过氧化氢酶介导金纳米颗粒交联聚集的乙肝表面抗原可视化检测[J]. 材料导报, 2022, 36(5): 21020098-4.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed