Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 21010244-8    https://doi.org/10.11896/cldb.21010244
  无机非金属及其复合材料 |
具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究
马超, 余飞, 孙翼飞, 袁欢, 徐明
西南民族大学电子信息学院,信息材料四川省重点实验室,成都 610041
Synthesis, Characterization and Photocatalytic Mechanism of Ag Decorated Sm∶ZnO Nanocomposite with High Photocatalytic Activity
MA Chao, YU Fei, SUN Yifei, YUAN Huan, XU Ming
Key Laboratory of Information Materials of Sichuan Province, School of Electronic Information, Southwest Minzu University, Chengdu 610041, China
下载:  全 文 ( PDF ) ( 8178KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作同时利用稀土元素掺杂和贵金属复合的独特性质对ZnO基复合材料的光学性质以及光催化性能进行调制,采用简便的高分子网络凝胶一步法成功制备了Ag复合Sm∶ZnO纳米复合光催化剂。通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和X射线光电子能谱(XPS)对Ag复合Sm∶ZnO复合光催化剂进行表征,结果表明,该复合光催化剂具有较好的结晶性和丰富的表面缺陷,Sm以Sm3+的形式进入了ZnO晶格,而Ag以单质的形式复合在ZnO表面。通过紫外-可见吸收光谱(UV-Vis)、光致发光光谱(PL)和表面光电压(SPV)的测试分析表明,Sm掺杂在提升Ag/ZnO对可见光的利用率的同时,还能更好地抑制光生载流子的复合。以亚甲基蓝(MB)作为模拟污染物的光催化实验表明,在模拟太阳光条件下,光照10 min ,Ag复合Sm∶ZnO可完全降解MB,其光催化效率是Ag/ZnO的2.44倍。五次循环降解实验验证了其光催化效率的稳定性。对光催化机理的分析表明,Ag复合Sm∶ZnO复合材料光催化性能的提升得益于Sm掺杂和Ag复合的协同效应。一方面,Sm、Ag的同时引入能使样品具有较好的结晶性和丰富的表面缺陷;另一方面,Sm掺杂引入的杂质能级加上Ag复合产生的表面等离子体共振效应在提升催化剂对可见光吸收的同时,也更利于光生电子的有效迁移,实现了光生载流子的更有效分离。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马超
余飞
孙翼飞
袁欢
徐明
关键词:  高分子网络凝胶法  光催化  Sm掺杂  Ag/ZnO    
Abstract: The photocatalytic properties of ZnO based composites are regulated by rare-earth metal doping and noble metal decoration simultaneously. Ag decorated Sm∶ZnO nanocomposite photocatalyst can be successfully synthesized by a facile one-step polymeric network gel method in the present work. The X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are used to study the structure, morphology and surface chemical composition of Ag decorated Sm∶ZnO composite. The results show that the composite has good crystallinity and abundant surface defects,and Sm is doped into the lattice of ZnO as Sm3+, while Ag is deposited on the surface of ZnO in the form of metal. The results of UV-visible absorption spectrum (UV-Vis), photoluminescence spectra (PL) and surface photo-voltage spectra (SPV) indicate that Sm doping is able to further improve the utilization of the visible light, and further restrain the recombination of photo-generated carriers, compared with Ag/ZnO. The photocatalytic experiments using methylene blue (MB) as the simulated pollutant under simulated sunlight irradiation show that MB can be completely degraded by Ag decorated Sm∶ZnO composite after irradiation for 10 min, and the photocatalytic efficiency is 2.44 times higher than that of Ag/ZnO. What's more, the stability of photocatalytic efficiency is repeatedly verified by five cyclic degradation experiments. The significantly enhanced photocatalytic properties of Ag decorated Sm∶ZnO composite are due to the synergistic effect of Sm doping and Ag decoration. On the one hand, with the introduction of Sm and Ag, the sample exhibits better crystal quality and abundant surface defects. On the other hand, the impurity energy levels introduced by Sm doping and the surface plasma resonance effect generated by Ag decoration not only improve the absorption of visible light, but also facilitate the migration of photogenerated electrons, thus realizing more efficient photogenerated carrier separation.
Key words:  polymer network gel method    photocatalytic    Sm doping    Ag/ZnO
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  O614  
基金资助: 西南民族大学研究生创新型科研项目(CX2020SZ91);国家自然科学基金青年科学基金项目(61901401)
通讯作者:  yufei@swun.edu.cn; hsuming_2001@aliyun.com   
作者简介:  马超,西南民族大学电子信息学院硕士研究生,主要从事氧化物功能材料的研究。
余飞,西南民族大学电子信息学院,副教授。2011年毕业于电子科技大学,获凝聚态物理专业博士学位。先后在湖南大学和四川大学从事访学和博士后研究。目前,主要从事氧化物功能材料研究。
徐明,西南民族大学教授。2000年7月毕业于中国科学院物理研究所,获凝聚态物理专业博士学位,先后在奥地利、比利时、新加坡从事博士后研究。已在物理或材料的国际主流刊物上发表SCI学术论文100多篇,授权7个中国专利。其中以第一或通讯作者身份完成的部分工作已被写入3部国际权威的专业工具书和15部国际学术专著。
引用本文:    
马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
MA Chao, YU Fei, SUN Yifei, YUAN Huan, XU Ming. Synthesis, Characterization and Photocatalytic Mechanism of Ag Decorated Sm∶ZnO Nanocomposite with High Photocatalytic Activity. Materials Reports, 2022, 36(8): 21010244-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010244  或          http://www.mater-rep.com/CN/Y2022/V36/I8/21010244
1 Ashouri R, Ghasemipoor P, Rasekh B, et al. International Journal of Environmental Science and Technology,2019,16(3),1729.
2 Li R, Li T, Zhou Q. Catalysts,2020,10(7),804.
3 Liu J L, Wang Y H, Ma J Z, et al. Journal of Alloys and Compounds,2019,783,898.
4 Sapkota K P, Lee I, Hanif M, et al. Catalysts,2019,9(6),498.
5 Samadi M, Zirak M, Naseri A, et al. Research on Chemical Interme-diates,2019,45(4),2197.
6 Ong C B, Ng L Y, Mohammad A W. Renewable and Sustainable Energy Reviews,2018,81,536.
7 Qi K Z, Xing X H, Zada A, et al. Ceramics International,2020,46(2),1494.
8 Cerrato E, Gionco C, Berruti I, et al. Journal of Solid State Chemistry,2018,264,42.
9 Yu X C, Dang K L, Song Z Y, et al. Materials Reports B:Research Papers,2020,34(7),14003.
于晓晨,党快乐,宋泽钰,等.材料导报:研究篇,2020,34(7),14003.
10 Xu M, Chen Y, Hu W Y, et al. Journal of Physics D:Applied Physics,2019,53,025106.
11 Senasu T, Chankhanittha T, Hemavibool K, et al. Materials Science in Semiconductor Processing,2020,123,105558.
12 Myilsamy M, Mahalakshmi M, Subha N, et al. RSC Advances,2016,6(41),35024.
13 Alam U, Khan A, Ali D, et al. RSC Advances,2018,8(31),17582.
14 Faraz M, Naqvi F K, Shakir M, et al. New Journal of Chemistry,2018,42(3),2295.
15 Sin J C, Lam S M, Lee K T, et al. Ceramics International,2013,39(5),5833.
16 Carvalho R G, Tavares M T S, Oliveira F K F, et al. Journal of Materials Science: Materials in Electronics,2017,28(11),7943.
17 Widiyandari H, Wardani A, Indriani N, et al. AIP Conference Procee-dings,2020,2219,080006.
18 Kavitha R, Kumar S G. Materials Science in Semiconductor Processing,2019,93,59.
19 Diantariani N P, Wahyuni E T, Kartini I, et al. IOP Conference Series: Materials Science and Engineering,2019,509,012099.
20 Shaislamov U, Lee H J. CrystEngComm,2018,20(46),7492.
21 Mendoza-Mendoza E, Nuñez-Briones A G, García-Cerda L A, et al. Ceramics International,2018,44(6),6176.
22 Georgekutty R, Seery M K, Pillai S C. The Journal of Physical Chemistry C,2008,112(35),13563.
23 Ansari S A, Khan M M, Lee J, et al. Journal of Industrial and Enginee-ring Chemistry,2014,20(4),1602.
24 Chen Y, Yu F, Liu Y T, et al. Materials Reports B:Research Papers,2017,31(12),120(in Chinese).
陈雨,余飞,刘禹彤,等.材料导报B:研究篇,2017,31(12),120.
25 Lu Y H, Xu M, Xu L X, et al. Journal of Nanoparticle Research,2015,17(9),350.
26 Liu Y T, Zhang Q P, Xu M, et al. Applied Surface Science,2019,476,632.
27 Xie W, Li Y Z, Sun W, et al. Journal of Photochemistry and Photobiology A: Chemistry,2010,216(2-3),149.
28 Pandiyarajan T, Mangalaraja R V, Karthikeyan B, et al. Applied Physics A,2015,119(2),487.
29 Yu F C, Nan D M, Song T Y, et al. Materials Reports B:Research Papers,2020,34(4),08003(in Chinese).
于富成,南冬梅,宋天云,等.材料导报:研究篇,2020,34(4),08003.
30 Chen C Q, Zheng Y H, Zhan Y Y, et al. Dalton Transactions,2011,40(37),9566.
31 Luo K, St. Clair T P, Lai X, et al. The Journal of Physical Chemistry B,2000,104(14),3050.
32 Zhang G, Lang J H, Zhang Q, et al. Journal of Materials Science: Materials in Electronics,2018,29(19),16534.
33 Wang J P, Wang Z Y,Huang B B, et al. ACS Applied Materials and Interfaces,2012,4(8),4024.
34 Zhang Q P, Xu X N, Liu Y T, et al. Scientific Reports,2017,7,46424.
35 Jose Y J, Manjunathan M, Selvaraj S J. Journal of Nanostructure in Chemistry,2017,7(3),259.
36 Yuan H, Xu M, Dong X S, et al. Materials Letters,2015,154,94.
37 Xu P S, Sun Y M, Shi C S, et al. Science in China Series A-Mathematics,2001,44,1174.
38 Mou H Y, Song C X, Zhou Y H, et al. Applied Catalysis B: Environmental,2018,221,565.
39 Lu Y H, Xu M, Xu L X, et al. Journal of Nanoparticle Research,2015,17(9),350.
40 Das A, Sahoo R K, Mishra D K, et, al. Applied Surface Science,2019,467,1059.
41 Chen D, Wang Z H, Ren T, et al. Journal of Physical Chemistry C,2014,118(28),15300.
42 Zhong J B, Li J Z, Wang T, et al. Applied Physics A,2016,122(1),4.
43 Rajbongshi H, Bhattacharjee S, Datta P. Materials Research Express,2019,6(4),045022.
44 Huo C Q, Jiang H, Lu Y M, et al. Materials Research Bulletin,2019,111,17.
45 Pascariu P, Cojocaru C, Olaru N, et al. Journal of Environmental Management,2019,239,225.
46 Hassanzadeh-Tabrizi S A, Do T O. Journal of Materials Science: Materials in Electronics,2018,29(13),10986.
47 Luo K Y, Li J, Hu W Y, et al. Nanomaterials,2020,10(10),1946.
48 Wang L, Zhang C B, Gao F, et al. Chemical Engineering Journal,2017,314,622.
49 Chen X Q, Wu Z S, Gao Z Z, et al. Nanomaterials,2017,7,258.
50 Chen X Q, Wu Z S, Liu D D, et al. Nanoscale Research Letters,2017,12,143.
51 Ha L, Vinh T, Thuy N, et al. Journal of Environmental Chemical Engineering,2021,9,105103.
52 Wang J F, Li Y, Qiao Y D, et al. New Journal of Chemistry,2018,42,18001.
[1] 常娜, 陈彦如, 谢锋, 王海涛2,. Bi2WO6/ZIF-67复合光催化剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 21010028-6.
[2] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[3] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[4] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[5] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[6] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[7] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[8] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[9] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[10] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[11] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[12] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[13] 曾鹂, 彭同江, 孙红娟, 李瑶, 杨敬杰. Mn掺杂LaNi1-xMnxO3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018-24025.
[14] 贾雯, 袁小亚, 冯紫娟, 吴雪, 彭冬, 刘毅. 一锅法合成缺陷型Bi/BiOBr纳米复合材料及其可见光驱动去除水体六价铬离子和有机染料的研究[J]. 材料导报, 2021, 35(24): 24032-24040.
[15] 丁同悦, 陈奕桦, 胡俊俊, 杨本宏, 黄智锋. CeO2/Bi24O31Br10异质结构的制备及可见光催化性能[J]. 材料导报, 2021, 35(22): 22011-22015.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed