Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 21020142-5    https://doi.org/10.11896/cldb.21020142
  金属与金属基复合材料 |
Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能
曾广凯1, 崔君阁1, 王雨辰1, 陈凯伦1, 潘森鑫1, 潘利文1,2,3, 胡治流1,2,3
1 广西大学资源环境与材料学院,南宁 530004
2 广西有色金属及特色材料加工重点实验室,南宁 530004
3 广西生态型铝产业协同创新中心,南宁 530004
Microstructure and Tensile Properties of Al3Ti/Al-Si-Cu-V-Zr Alloy Composites
ZENG Guangkai1, CUI Junge1, WANG Yuchen1, CHEN Kailun1, PAN Senxin1, PAN Liwen1,2,3,HU Zhiliu1,2,3
1 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2 Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Nanning 530004, China
3 Guangxi Eco-type Aluminum Industry Collaborative Innovation Center, Nanning 530004, China
下载:  全 文 ( PDF ) ( 6645KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作在Al-Si-Cu-V-Zr合金熔体中加入K2TiF6盐,通过熔体原位反应法引入不同含量的Al3Ti强化相,研究了铸态xAl3Ti/Al-Si-Cu-V-Zr合金复合材料的显微组织和力学性能。结果表明,该复合材料由α-Al、共晶Si、Al2Cu、(Al,Si)3M((Al,Si)3(Zr,V)、(Al,Si)3(Ti,Zr,V))相组成,随着K2TiF6盐添加量的增加,(Al,Si)3M相由长片状变为等轴颗粒状,α-Al枝晶变得更均匀细小,长条状共晶硅转变成细小的短纤维状,共晶硅长径比和(Al,Si)3M相平均粒径减小。引入Al3Ti强化相后铝基复合材料的拉伸性能均得到了提高,含6%(质量分数,下同)Al3Ti的复合材料的室温拉伸性能最佳,抗拉强度和屈服强度分别达到239.3 MPa和85.3 MPa,比未引入Al3Ti基体的合金分别提高了28.6%和28.8%。分析表明,残余液相中的Al3Ti相通过细化共晶组织中的α-Al相而间接地细化了共晶硅,这是共晶相细化的原因;细化的共晶硅短纤维增强和细小(Al,Si)3M的颗粒增强是复合材料力学性能提高的主要原因,而粗大的(Al,Si)3M脆性相不利于复合材料力学性能的提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾广凯
崔君阁
王雨辰
陈凯伦
潘森鑫
潘利文
胡治流
关键词:  Al-Si-Cu合金  平均粒径  长径比  显微组织  拉伸性能    
Abstract: In this work, K2TiF6 salt was added into the Al-Si-Cu-V-Zr alloy melt, and the Al3Ti strengthening phases of different contents were introduced into Al-Si-Cu-V-Zr alloy through the melting in-situ reaction method. The microstructure and mechanical properties of the as-cast xAl3Ti/Al-Si-Cu-V-Zr composite were studied. The results showed that the composite was composed of α-Al, eutectic Si, Al2Cu and (Al,Si)3M((Al,Si)3-(Zr,V), (Al,Si)3(Ti,Zr,V)) phases. With the addition of K2TiF6 salt increasing, the (Al,Si)3M phase changed from strip to equiaxed particle, and the α-Al phase turned more fine and the strip eutectic silicon changed into the fine short fiber. The aspect ratio of eutectic silicon and the ave-rage particle size of (Al,Si)3M phase decreased with K2TiF6 salt addition increasing. The tensile properties of aluminum matrix composites were improved after introducing (Al,Si)3M reinforcing phase. The tensile strength and yield strength of composites containing 6wt%Al3Ti were 239.3 MPa and 85.3 MPa, respectively, 28.6% and 28.8% higher than those of the matrix alloys. It was found that the Al3Ti phase in the residual liquid phase indirectly refined the eutectic silicon by refining the α-Al in the eutectic structure. Fine and short fiber eutectic silicon reinforcement and fine (Al,Si)3M particle reinforcement were the main reasons for the improvement of the mechanical properties of the composites, while coarse (Al,Si)3M brittle phase was harmful to the improvement of mechanical properties.
Key words:  Al-Si-Cu alloy    the average particle size    aspect ratio    microstructure    tensile properties
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TG146.2  
基金资助: 广西有色金属及特色材料加工重点实验室材料加工专项(2021GXMPSF04);南宁市科技发展计划(20171005-1);广西大学科研基金项目(XJZ100343);广西大学大学生创新创业训练计划(202010593056)
通讯作者:  plw988@163.com   
作者简介:  曾广凯,2019年6月毕业于百色学院,获得工学学士学位。于2019年9月至今在广西大学资源环境与材料学院攻读工学硕士学位。主要研究方向为金属基复合材料。
潘利文,广西大学资源环境与材料学院,副研究员。2012年6月毕业于北京航空航天大学,获材料加工工程专业博士学位,同年到广西大学工作至今,2017年4月—2018年4月在美国纽约大学做访问学者。主要从事金属基复合材料研究,重点研究耐热铝基复合材料、金属基复合泡沫材料、铜基复合材料。在国内外重要期刊发表论文30多篇,申报发明专利近10项。
引用本文:    
曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
ZENG Guangkai, CUI Junge, WANG Yuchen, CHEN Kailun, PAN Senxin, PAN Liwen,HU Zhiliu. Microstructure and Tensile Properties of Al3Ti/Al-Si-Cu-V-Zr Alloy Composites. Materials Reports, 2022, 36(8): 21020142-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020142  或          http://www.mater-rep.com/CN/Y2022/V36/I8/21020142
1 Wang X, Jha A, Brydson R. Materials Science and Engineering: A,2004,364(1-2),339.
2 Jing S, Wang X Q, Yan C, et al. Transactions of Nonferrous Metals Society of China,2020,30(5),1148.
3 Pan L, Tang J, Lin W, et al. Materials Reports A:Review Papers,2015,29(8),2(in Chinese).
潘利文,唐景凡,林维捐,等.材料导报:综述篇,2015,29(8),2.
4 Yang C, Liu Z, Zheng Q, et al. Journal of Alloys and Compounds,2018,747,580.
5 Birol Y. Journal of Alloys and Compounds,2009,478,265.
6 Chen G, Jin Y, Zhang H, et al. Materials Science and Engineering: A,2018,724,181.
7 Liu Z, Wang X, Han Q, et al. Powder Technology,2014,253,751.
8 Ma S, Wang Y, Wang X. Journal of Alloys and Compounds,2019,792,365.
9 Murray J, Mcalister A. Bulletin of Alloy Phase Diagrams,1984,5(1),74.
10 Lee K, Kwon Y N, Lee S. Journal of Alloys and Compounds,2008,461(1-2),533.
11 Wang Q, Caceres C, Griffiths J. Metallurgical and Materials Transactions A,2003,34(12),2901.
12 Caceres C, Griffiths J. Acta Materialia,1996,44(1),25.
13 Sun J, Zeng G K, Rao D W, et al. Metals and Materials International, 2021, DOI.org/10.1007/s12540-020-00909-0.
14 Mohamed A, Samuel F. Materials Science and Engineering: A,2013,577,66.
15 Shaha S, Czerwinski F, Kasprzak W, et al. Thermochimica Acta,2014,595,12.
16 Hurtalová L, Tillová E, Chalupová M. Archive of Mechanical Enginee-ring,2012,59(4),387.
17 Bian Y, Gao T, Li Z, et al. Materials Science and Engineering: A,2019,762,6.
18 Lee H M, Lee J, Lee Z H. Scripta Metallurgica,1991,25,1.
19 Hansen S C, Loper C R. Calphad-computer Coupling of Phase Diagrams & Thermochemistry,2000,24(3),343.
20 Schuster J C, Palm M. Journal of Phase Equilibria & Diffusion,2006,27(3),255.
21 Cui Z Q, Qin Y C. Metallurgy and heat treatment, China Machine Press, China,2007(in Chinese).
崔忠圻,覃耀春.金属学与热处理,机械工业出版社,2007.
22 Shaha S K, Czerwinski F, Kasprzak W, et al. Materials & Design,2014,59,352.
[1] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[2] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[3] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[4] 赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
[5] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[6] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[7] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[8] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[9] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[10] 车波, 卢立伟, 吴木义, 康伟, 唐伦圆, 房大庆. 预时效对变形镁合金组织与力学性能的影响[J]. 材料导报, 2021, 35(21): 21249-21258.
[11] 杨海峰, 赵洪运, 许欣欣, 孙广达, 周利, 赵慧慧, 刘会杰. 静轴肩搅拌摩擦焊2A14-T4铝合金T形接头的组织和性能[J]. 材料导报, 2021, 35(20): 20045-20051.
[12] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[13] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[14] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[15] 狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed