Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22104-22108    https://doi.org/10.11896/cldb.20070311
  金属与金属基复合材料 |
钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律
徐仰涛1,2, 马腾飞1,2, 王永红1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Effect of Tantalum on Microstructure and Mechanical Properties of Co-8.8Al-9.8W Alloy
XU Yangtao1,2, MA Tengfei1,2, WANG Yonghong1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 2145KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究合金化Ta(钽)元素对Co-8.8Al-9.8W高温合金微观组织和力学性能的影响,通过对Co-8.8Al-9.8W-xTa(x=0,1,2,4,6,原子分数,%,下同)合金微观组织和室温压缩性能的研究发现:铸态合金组织由γ基体相和衬度较亮的晶间相组成,枝晶间析出的白色衬度晶间相随着Ta含量的增加逐渐增多,并与γ基体相呈现出典型的共晶组织。经过1 300 ℃/4 h的固溶处理和900 ℃/50 h的时效热处理,γ基体上析出均匀细小的γ′强化相,并且随Ta元素含量的增加,团簇状二次相(μ相、χ相和β相)逐渐增多。Co-8.8Al-9.8W-xTa(x=0,1,2,4,6)合金在铸态和热处理状态下的显微硬度均随着Ta含量的增加而增加,其中,6Ta合金在铸态和热处理状态下均表现出最大的显微硬度,分别为567 HV和625 HV。室温压缩下,除1Ta合金外,其他合金的屈服强度σ0.2随着Ta元素含量的增加而逐渐增大,6Ta合金表现出1 259 MPa的最大屈服强度;合金的极限抗压强度随着Ta元素含量的增加而先增大后减小,且在4Ta合金中表现出2 522 MPa的最大抗压强度;所有合金中2Ta合金表现出22.95%的最大塑性变形能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐仰涛
马腾飞
王永红
关键词:  Co-8.8Al-9.8W高温合金  显微组织  显微硬度  压缩性能    
Abstract: In order to study the effect of Ta(tantalum)element on the microstructure and mechanical properties of Co-8.8Al-9.8W superalloys at room temperature, the study on the microstructure and compressive properties of Co-8.8Al-9.8W-xTa (x=0,1,2,4,6,atomic fraction,%) superalloy at room temperature show that the as-cast superalloy microstructure is composed of γ matrix phase and white intergranular phase, and the white inter-granular phase precipitated between dendrites gradually increased with the increase of Ta content, and showed a typical eutectic microstructure with the γ matrix phase. After 1 300 ℃/4 h solution treatment and 900 ℃/50 h aging heat treatment, a uniform and fine γ′ strengthe-ned phase was precipitated on the γ matrix, and with the increase of Ta element content, the cluster-like secondary phase (μ phase, χ phase and β phase) gradually increased. The microhardness of Co-8.8Al-9.8W-xTa (x=0,1,2,4,6) alloy in as-cast and heat-treated state increased with the increase of Ta content, among which the 6Ta alloy had the maximum microhardness in both as-cast and heat-treated conditions, respectively 567HV and 625HV. Under room temperature compression, the yield strength σ0.2 of the alloy gradually increased with the increase of Ta element content except for 1Ta alloy, and the 6Ta alloy had a maximum yield strength of 1 259 MPa; the maximum compressive strength of the alloy showed to increase first and then decrease with Ta content increases and the 4Ta alloy had a maximum compressive strength of 2 522 MPa; 2Ta alloy of all alloys exhibited a maximum plastic deformation capacity of 22.95%.
Key words:  Co-8.8Al-9.8W superalloy    microstructure    microhardness    compressive properties
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TG146.1+6  
基金资助: 国家自然科学基金(51561019)
通讯作者:  lanzhouxuyt@163.com   
作者简介:  徐仰涛,中共党员,工学博士,教授,硕士生导师,现任白银新材料研究院院长。2012-2015在兰州理工大学/方大炭素新材料科技股份有限公司联合站从事博士后科研工作,兼任《Solar Energy Materials & Solar Cells》和《稀有金属》审稿人、甘肃省循环经济专家委员会委员。主要从事钴基合金制备及性能、有色金属电结晶及太阳能储热炭素材料等的教学与科学研究工作。主持和参与了国家自然科学基金和甘肃省重大科技专项项目等国家、省级科技专项项目、企业横向课题等近10项;主持并完成国家重点实验室开放基金2项。在Solar Energy Materials & Solar CellsJournal of Alloys and CompoundsSurface & Coatings TechnologyCHINA WELDING、《稀有金属材料与工程》和《中国有色金属学报》等国内外著名学术期刊上发表论文40余篇,其中SCI、EI、ISTP三大索引检索论文20余篇。研究成果先后获得(第一获奖人)厅级科技进步二等奖、三等奖各1项,参与(主要参加人)获得甘肃省技术发明二等和地厅级一等奖各1项;指导学生获得国家和省级奖励3项;获得省部级、地厅级人才扶持项目4项。
引用本文:    
徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
XU Yangtao, MA Tengfei, WANG Yonghong. Effect of Tantalum on Microstructure and Mechanical Properties of Co-8.8Al-9.8W Alloy. Materials Reports, 2021, 35(22): 22104-22108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070311  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22104
1 Shi C X, Zhong Z Y. Journal of Metals, 2010, 46(11),1281(in Chinese).
师昌绪, 仲增墉. 金属学报, 2010, 46(11),1281.
2 Ma Q H, Wang Q, Dong C. Materials Reports A: Review Papers, 2020, 34(3),157(in Chinese).
马启慧, 王清, 董闯. 材料导报: 综述篇, 2020, 34(3),157.
3 Jin M, Miao N H, Zhao W Y, et al. Computational Materials Science, 2018, 148,27.
4 Bocchini P J, Sudbrack C K, Noebe R D, et al. Acta Materialia, 2018, 159,197.
5 Sato J, Omori T, Oikawa K. Science, 2006, 312(5770),90.
6 Li Y Z, Pyczak F, Oehring M, et al. Journal of Alloys and Compounds, 2017, 729,266.
7 Xu Y T, Li H, Wang Y H, et al. Journal of Alloys and Compounds, 2020, 854(15), 157236.
8 Suzuki A, Pollock T M. Acta Materialia, 2008, 56(6),1288.
9 Lass E A. Journal of Alloys and Compounds, 2020, 825,154158.
10 Zhou X Z, Fu H D, Zhang Y, et al. Journal of Alloys and Compounds, 2018, 768,464.
11 Vorontsov V A, Barnard J S, Rahman K M, et al. Acta Materialia, 2016, 120,14.
12 Sauza D J, Dunand D C, Seidman D N. Acta Materialia, 2019, 174,427.
13 Li Y Z, Pyczak F, Paul J, et al. Journal of Materials Science & Technology, 2018, 34(11),2212.
14 Chen Z M T, Okamoto N L, Demura M, et al. Scripta Materialia, 2016, 121,28.
15 Tomaszewska A, Mikuszewski T, Moskal G, et al. Journal of Alloys and Compounds, 2018, 750,741.
16 Xue F. Effect of Ta and Ti on microstructural stability and creep behavior of novel γ′ strengthened co-base single crystal superalloys. Ph.D. Thesis, National University of Defense Technology, China, 2014(in Chinese).
薛飞. 钽和钛对新型钴基单晶高温合金组织稳定性与高温蠕变行为的影响研究. 博士学位论文, 国防科学技术大学, 2014.
17 Liu X J, Pan Y W, Chen Y C, et al. Metals, 2018, 8(7),5.
18 Moskal G, Migas D, Niemiec D, et al. Journal of Engineering Materials and Technology, 2019, 141(4),1.
19 Lu S, Antonov S, Li L F, et al. Acta Materialia, https://doi.org/10.1016/j.actamat.2020.03.015.
20 Bezold A, Volz N, Xue F. et al. Metallurgical and Materials Transactions, 2020, 51(4),1567.
21 Lu S, Antonov S, Li L F, et al. Metallurgical and Materials Transactions, 2018, 49(9),4079.
22 Zhou H J, Li L F, Antonov S, et al. Materials Science and Engineering, 2020, 772,138791.
23 Qu S S, Li Y J, Wang C P, et al. Materials science and Engineering, 2020, 787,139455.
[1] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[2] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[3] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[4] 温俊霞, 余磊, 曹睿, 车洪艳, 王铁军, 董浩, 闫英杰. 回火处理对一种新型钴基合金表面结构和压缩力学性能的影响[J]. 材料导报, 2021, 35(Z1): 381-385.
[5] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[6] 车波, 卢立伟, 吴木义, 康伟, 唐伦圆, 房大庆. 预时效对变形镁合金组织与力学性能的影响[J]. 材料导报, 2021, 35(21): 21249-21258.
[7] 杨海峰, 赵洪运, 许欣欣, 孙广达, 周利, 赵慧慧, 刘会杰. 静轴肩搅拌摩擦焊2A14-T4铝合金T形接头的组织和性能[J]. 材料导报, 2021, 35(20): 20045-20051.
[8] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[9] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[10] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[11] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[12] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[13] 狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
[14] 陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
[15] 杨平, 毛育青, 李芊芃, 何良刚, 柯黎明. 合金元素对Cu/Sn-/Cu回流焊焊点界面微观结构及剪切性能的影响[J]. 材料导报, 2021, 35(14): 14156-14160.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed