Effect of Tantalum on Microstructure and Mechanical Properties of Co-8.8Al-9.8W Alloy
XU Yangtao1,2, MA Tengfei1,2, WANG Yonghong1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Abstract: In order to study the effect of Ta(tantalum)element on the microstructure and mechanical properties of Co-8.8Al-9.8W superalloys at room temperature, the study on the microstructure and compressive properties of Co-8.8Al-9.8W-xTa (x=0,1,2,4,6,atomic fraction,%) superalloy at room temperature show that the as-cast superalloy microstructure is composed of γ matrix phase and white intergranular phase, and the white inter-granular phase precipitated between dendrites gradually increased with the increase of Ta content, and showed a typical eutectic microstructure with the γ matrix phase. After 1 300 ℃/4 h solution treatment and 900 ℃/50 h aging heat treatment, a uniform and fine γ′ strengthe-ned phase was precipitated on the γ matrix, and with the increase of Ta element content, the cluster-like secondary phase (μ phase, χ phase and β phase) gradually increased. The microhardness of Co-8.8Al-9.8W-xTa (x=0,1,2,4,6) alloy in as-cast and heat-treated state increased with the increase of Ta content, among which the 6Ta alloy had the maximum microhardness in both as-cast and heat-treated conditions, respectively 567HV and 625HV. Under room temperature compression, the yield strength σ0.2 of the alloy gradually increased with the increase of Ta element content except for 1Ta alloy, and the 6Ta alloy had a maximum yield strength of 1 259 MPa; the maximum compressive strength of the alloy showed to increase first and then decrease with Ta content increases and the 4Ta alloy had a maximum compressive strength of 2 522 MPa; 2Ta alloy of all alloys exhibited a maximum plastic deformation capacity of 22.95%.
作者简介: 徐仰涛,中共党员,工学博士,教授,硕士生导师,现任白银新材料研究院院长。2012-2015在兰州理工大学/方大炭素新材料科技股份有限公司联合站从事博士后科研工作,兼任《Solar Energy Materials & Solar Cells》和《稀有金属》审稿人、甘肃省循环经济专家委员会委员。主要从事钴基合金制备及性能、有色金属电结晶及太阳能储热炭素材料等的教学与科学研究工作。主持和参与了国家自然科学基金和甘肃省重大科技专项项目等国家、省级科技专项项目、企业横向课题等近10项;主持并完成国家重点实验室开放基金2项。在Solar Energy Materials & Solar Cells、Journal of Alloys and Compounds、Surface & Coatings Technology、CHINA WELDING、《稀有金属材料与工程》和《中国有色金属学报》等国内外著名学术期刊上发表论文40余篇,其中SCI、EI、ISTP三大索引检索论文20余篇。研究成果先后获得(第一获奖人)厅级科技进步二等奖、三等奖各1项,参与(主要参加人)获得甘肃省技术发明二等和地厅级一等奖各1项;指导学生获得国家和省级奖励3项;获得省部级、地厅级人才扶持项目4项。
引用本文:
徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
XU Yangtao, MA Tengfei, WANG Yonghong. Effect of Tantalum on Microstructure and Mechanical Properties of Co-8.8Al-9.8W Alloy. Materials Reports, 2021, 35(22): 22104-22108.
1 Shi C X, Zhong Z Y. Journal of Metals, 2010, 46(11),1281(in Chinese). 师昌绪, 仲增墉. 金属学报, 2010, 46(11),1281. 2 Ma Q H, Wang Q, Dong C. Materials Reports A: Review Papers, 2020, 34(3),157(in Chinese). 马启慧, 王清, 董闯. 材料导报: 综述篇, 2020, 34(3),157. 3 Jin M, Miao N H, Zhao W Y, et al. Computational Materials Science, 2018, 148,27. 4 Bocchini P J, Sudbrack C K, Noebe R D, et al. Acta Materialia, 2018, 159,197. 5 Sato J, Omori T, Oikawa K. Science, 2006, 312(5770),90. 6 Li Y Z, Pyczak F, Oehring M, et al. Journal of Alloys and Compounds, 2017, 729,266. 7 Xu Y T, Li H, Wang Y H, et al. Journal of Alloys and Compounds, 2020, 854(15), 157236. 8 Suzuki A, Pollock T M. Acta Materialia, 2008, 56(6),1288. 9 Lass E A. Journal of Alloys and Compounds, 2020, 825,154158. 10 Zhou X Z, Fu H D, Zhang Y, et al. Journal of Alloys and Compounds, 2018, 768,464. 11 Vorontsov V A, Barnard J S, Rahman K M, et al. Acta Materialia, 2016, 120,14. 12 Sauza D J, Dunand D C, Seidman D N. Acta Materialia, 2019, 174,427. 13 Li Y Z, Pyczak F, Paul J, et al. Journal of Materials Science & Technology, 2018, 34(11),2212. 14 Chen Z M T, Okamoto N L, Demura M, et al. Scripta Materialia, 2016, 121,28. 15 Tomaszewska A, Mikuszewski T, Moskal G, et al. Journal of Alloys and Compounds, 2018, 750,741. 16 Xue F. Effect of Ta and Ti on microstructural stability and creep behavior of novel γ′ strengthened co-base single crystal superalloys. Ph.D. Thesis, National University of Defense Technology, China, 2014(in Chinese). 薛飞. 钽和钛对新型钴基单晶高温合金组织稳定性与高温蠕变行为的影响研究. 博士学位论文, 国防科学技术大学, 2014. 17 Liu X J, Pan Y W, Chen Y C, et al. Metals, 2018, 8(7),5. 18 Moskal G, Migas D, Niemiec D, et al. Journal of Engineering Materials and Technology, 2019, 141(4),1. 19 Lu S, Antonov S, Li L F, et al. Acta Materialia, https://doi.org/10.1016/j.actamat.2020.03.015. 20 Bezold A, Volz N, Xue F. et al. Metallurgical and Materials Transactions, 2020, 51(4),1567. 21 Lu S, Antonov S, Li L F, et al. Metallurgical and Materials Transactions, 2018, 49(9),4079. 22 Zhou H J, Li L F, Antonov S, et al. Materials Science and Engineering, 2020, 772,138791. 23 Qu S S, Li Y J, Wang C P, et al. Materials science and Engineering, 2020, 787,139455.