Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21249-21258    https://doi.org/10.11896/cldb.20040191
  金属与金属基复合材料 |
预时效对变形镁合金组织与力学性能的影响
车波1, 卢立伟1,2, 吴木义3, 康伟1, 唐伦圆4, 房大庆5
1 湖南科技大学材料科学与工程学院, 湘潭 411201
2 湖南科技大学湖南省新能源汽车产学研海智创新中心,湘潭 411201
3 江南工业集团有限公司,湘潭 411207
4 湖南融拓新材料研究有限公司,湘潭 411100
5 焦作市益瑞合金材料有限公司,焦作 454950
Effect of Pre-aging on Microstructure and Mechanical Properties of Wrought Magnesium Alloy
CHE Bo1, LU Liwei1,2, WU Muyi3, KANG Wei1, TANG Lunyuan4, FANG Daqing5
1 College of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
2 Hunan Provincial Overseas-wisdom Innovation Center of New Energy Vehicle in Industrial-academic-research Cooperation, Hunan University of Science and Technology, Xiangtan 411201,China
3 Jiangnan Industrial Group Co., Ltd., Xiangtan 411207,China
4 Hunan Rongtuo New Material Research Co., Ltd., Xiangtan 411100,China
5 Jiaozuo Yirui Magnesium Alloy Co., Ltd., Jiaozuo 454950, China
下载:  全 文 ( PDF ) ( 18472KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与铸造镁合金相比,变形镁合金可获得更高的强度、更好的延展性以及更多样化的力学性能,从而满足多样化镁合金结构件的应用需求。但由于变形镁合金绝对强度低、塑性变形能力差,其应用范围受到了极大的限制。近期研究发现,对变形镁合金进行预时效处理能够显著提高合金的综合力学性能,因此总结和归纳预时效对变形镁合金的影响具有重要的理论参考价值和实践指导意义。
预时效是在塑性加工前进行时效处理的一种时效方法,预时效处理可通过欠时效、峰值时效和过时效等工艺调控析出相的大小、形状、分布和位向,析出相在后续的加工变形过程中具有改善材料组织与性能的重要作用。预时效提供的析出相,在后续塑性加工变形过程中为动态再结晶提供形核核心,促进动态再结晶,细化晶粒,激活非基面滑移,弱化基面织构,且晶界析出相可显著抑制晶粒长大,有效阻碍位错运动,也可使位错累积增多,小角度晶界增多。此外,增加析出相含量能减小晶粒尺寸,抑制{1012}拉伸孪晶的形核和长大,增加{1011}压缩孪晶和{1011}-{1012}双孪晶含量,这些孪晶增加了动态再结晶的形核核心,改变了晶粒取向,进而大幅提高了合金的强度、屈服应力和峰值应力,同时也保证了合金的延展性,极大地改善了镁合金的综合力学性能。
本文针对Mg-Al系、Mg-Zn系、Mg-Sn系和Mg- RE系等四系合金,总结分析了预时效对变形镁合金组织与性能的影响,着重从压缩、拉伸、挤压和轧制等变形工艺角度进行综述,为制备综合力学性能优良的镁合金提供参考。此外,本文指出了预时效变形镁合金在未来的发展动态和研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
车波
卢立伟
吴木义
康伟
唐伦圆
房大庆
关键词:  变形镁合金  预时效  显微组织  力学性能    
Abstract: Comparing with cast Mg alloy, wrought Mg alloy has higher strength, better ductility and more diversified mechanical properties, and it consequently meet the diversified application requirements of structural parts. However, its comprehensive applications are limited by low absolute strength and poor plastic deformation capacity. Recent studies have found that pre-aging treatment can significantly improve the comprehensive mechanical properties of wrought Mg alloy. Therefore, summarizing the effects of pre-aging on wrought Mg alloys has important theoretical reference value and practical guiding significance.
Pre-aging is an aging method for aging treatment before plastic processing. The pre-aging treatment can control the size, shape, distribution and orientation of the precipitated phase through under-aged, peak-aged and over-aging processes, and the precipitated phase plays an important role in improving the microstructure and mechanical properties of the alloys during subsequent plastic processing. The precipitated phase provided by pre-aging treatment can be severed as nucleation sites for dynamic recrystallization during subsequent plastic processing, thus promoting dynamic recrystallization, refining grains, activating non-basal slip and weakening basal texture. Moreover, the precipitated phase at grain boun-dary can obviously restrain the grain growth and effectively hinder the dislocation movement, and can also increase the accumulation of dislocations and the number of low-angle grain boundaries. Besides, increasing the precipitation can reduce the grain size and inhibit the nucleation and growth of {1012} extension twin, and also add the content of the {1011} contraction twin and the {1011}-{1012} double twin, which can increase nucleation sites of dynamic recrystallization and change the grain orientation, and then greatly increases the strength, yield stress and peak stress of the alloy. Meanwhile, the alloy ductility is also guaranteed, thereby greatly improving the comprehensive mechanical properties of Mg alloy.
This article summarizes and analyzes the effects of pre-aging on microstructure and properties of wrought Mg alloys for Mg-Al, Mg-Zn, Mg-Sn and Mg-RE alloys. The review is mainly focused on the deformation process of compression, tensile, extrusion and rolling, which can provide va-luable reference for the preparation of Mg alloy with excellent comprehensive mechanical properties. In addition, the paper points out the development trend and research emphasis of the pre-aged wrought Mg alloy in the future.
Key words:  wrought magnesium alloy    pre-aging    microstructure    mechanical properties
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金资助项目(52174362;51975207);湖南省自然科学基金优秀青年项目(2019JJ30010);湖南省湘潭市科技创新项目(CGYB20201008)
通讯作者:  cqulqyz@126.com   
作者简介:  车波,2019年6月毕业于安徽工业大学,获得工学学士学位。现为湖南科技大学材料科学与工程学院研究生,在卢立伟教授的指导下进行研究。目前主要的研究领域为镁合金的塑性加工及强韧性机理研究。
卢立伟,湖南科技大学教授。于2006年获得湖南工业大学学士学位,2012年获得重庆大学工学硕士和博士学位,在铸造、轧制、挤压和特殊挤压等方面发表70多篇论文。
引用本文:    
车波, 卢立伟, 吴木义, 康伟, 唐伦圆, 房大庆. 预时效对变形镁合金组织与力学性能的影响[J]. 材料导报, 2021, 35(21): 21249-21258.
CHE Bo, LU Liwei, WU Muyi, KANG Wei, TANG Lunyuan, FANG Daqing. Effect of Pre-aging on Microstructure and Mechanical Properties of Wrought Magnesium Alloy. Materials Reports, 2021, 35(21): 21249-21258.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040191  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21249
1 Zhong L X, Yang M B, Yuan S, et al. Journal of Chongqing University of Technology (Natural Science), 2019, 33(8), 90 (in Chinese).
钟罗喜, 杨明波, 袁淑, 等.重庆理工大学学报(自然科学), 2019, 33(8), 90.
2 Guo F, Zhu H, Zhang Z, et al. Joumal of Chongqing University of Technology (Natural Science), 2020, 34(9),141 (in Chinese).
郭非, 祝寒, 张震, 等.重庆理工大学学报(自然科学), 2020, 34(9),141.
3 Xi G Q, Chen Y, Chen S, et al. Journal of Chongqing University of Technology (Natural Seience), 2020, 34(9), 147 (in Chinese).
席国强, 陈艺, 陈爽, 等.重庆理工大学学报(自然科学), 2020, 34(9), 147.
4 Min X G, Sun Y S, Du W W, et al.Journal of Southeast University(Na-tural Science Edition), 2002, 32(3), 1 (in Chinese).
闵学刚, 孙扬善, 杜温文, 等.东南大学学报(自然科学版), 2002, 32(3), 1.
5 Tang W, Han E H, Xu Y B, et al.Acta Metallurgica Sinica, 2005, 41(11), 1199 (in Chinese).
唐伟, 韩恩厚, 徐永波, 等.金属学报, 2005, 41(11), 1199.
6 Zhao Y W. Effect of thermo-mechanical treatment on microstructure and properties of AZ91D magnesium alloy. Master's Thesis, Chongqing University, China, 2006 (in Chinese).
赵煜炜. 形变热处理对AZ91D镁合金组织和性能的影响. 硕士学位论文, 重庆大学,2006.
7 Zhu T, Huang G J, Zhou F, et al.Materials Reports B: Research Papers, 2017, 31(10), 58 (in Chinese).
朱涛, 黄光杰, 周芳, 等. 材料导报:研究篇, 2017, 31(10), 58.
8 Huang W, Li H.Transactions of Materials and Heat Treatment, 2006, 27(2), 37 (in Chinese).
黄巍, 李获.材料热处理学报, 2006, 27(2), 37.
9 Zhang J M, Jiang B L, Wang Z H, et al.Transactions of Materials and Heat Treatment, 2007, 28(6), 63 (in Chinese).
张菊梅, 蒋百灵, 王志虎, 等. 材料热处理学报, 2007, 28(6), 63.
10 Wang M, Wang S R, Wang Y J, et al.Transactions of Materials and Heat Treatment, 2010, 31(6), 95 (in Chinese).
王敏, 王守仁, 王砚军, 等.材料热处理学报, 2010, 31(6), 95.
11 Xu W T, Lu Y L, Zhou D S.Hot Working Technology, 2017, 46(8), 237 (in Chinese).
徐文婷, 卢雅琳, 周东帅.热加工工艺, 2017, 46(8), 237.
12 Sun J, Zhang D F, Tang T, et al. Rare Metal Materials and Engineering, 2017, 46(7), 1768.
13 Jung J G , Park S H , You B S.Journal of Alloys and Compounds, 2015, 627, 324.
14 Huang X T, Li Y H. Journal of Zhongyuan University of Technology, 2016, 27(4), 54 (in Chinese).
黄小婷, 李英华.中原工学院学报, 2016, 27(4), 54.
15 Cai G Y, Deng P H, Wu H H.Transactions of Materials and Heat Treatment, 2011, 32(Supplement), 75 (in Chinese).
蔡刚毅, 邓鹏辉, 吴海宏.材料热处理学报, 2011, 32(增刊), 75.
16 Sun H. Effects of pre-aging treatment on the microstructure and mechanical properties of Mg-RE alloy during hot deformation. Master's Thesis, Central South University, China, 2014 (in Chinese).
孙欢. 预时效对稀土镁合金热变形组织和力学性能的影响. 硕士学位论文, 中南大学, 2014.
17 Liu H. Effect of solution and pre-aging treatment on thermal tensile beha-vior and microstructure of extruded AZ80 magnesium alloy. Master's Thesis, Jiangsu University, China, 2018 (in Chinese).
刘惠. 固溶和预时效处理对挤压AZ80镁合金热拉伸行为及微观组织的影响. 硕士学位论文, 江苏大学, 2018.
18 Jung J G, Park S H, Yu H, et al. Scripta Materialia, 2014, 93, 8.
19 Cheng W, Tian L, Wang H, et al.Materials Science and Engineering: A, 2017, 687, 148.
20 Xu X Y. Effects and mechanisms of the Mg17Al12 phase on the static recrystallization behavior of Mg-Al-Zn alloys. Master's Thesis, Jilin University, China, 2018 (in Chinese).
徐新宇. Mg-Al-Zn系合金中Mg17Al12第二相对静态再结晶行为的影响规律及作用机制. 硕士学位论文,吉林大学, 2018.
21 He B, Hu Y B, Yao Q S. Transactions of Materials and Heat Treatment, 2018, 39(12), 13 (in Chinese).
贺兵, 胡耀波, 姚青山.材料热处理学报, 2018, 39(12), 13.
22 Somekawa H, Singh A, Mukai T, et al. Journal of Materials Research, 2007, 22(4), 965.
23 Yu Z, Huang Y, Mendis C L, et al.Materials Science and Engineering: A, 2015, 642, 23.
24 Zhong L P, Wang Y J, Dou Y C. Journal of Magnesium and Alloys, 2019, 7(4), 637.
25 Xin B P. The effect of two-stage aging on microstructure and properties of ZM6 magnesium alloy. Master's Thesis, Harbin University of Science and Technology, China, 2015 (in Chinese).
辛北平. 双级时效对ZM6镁合金组织和性能的影响. 硕士学位论文, 哈尔滨理工大学, 2015.
26 Li Y N, Jiang W Y, Xin B P, et al. Special-cast and Non-ferrous Alloys, 2015, 35(10), 1097 (in Chinese).
李轶楠, 姜文勇, 辛北平, 等.特种铸造及有色合金, 2015, 35(10), 1097.
27 Yu D, Zhang D, Sun J, et al. Journal of Alloys and Compounds, 2017, 690, 553.
28 Zhang Y, Zhang Z M, Zhang X. Material and Heat Treatment, 2010, 6(39), 139 (in Chinese).
张义, 张治民, 张星. 材料热处理技术, 2010, 6(39), 139.
29 Wang W H, Wu D, Chen R S, et al. Acta metallurgica sinica, 2016, 52(5), 567 (in Chinese).
王文辉, 吴迪, 陈荣石, 等. 金属学报, 2016, 52(5), 567.
30 Xu S W, Matsumoto N, Kamado S, et al. Materials Science and Enginee-ring: A, 2009, 517(1-2), 354.
31 Jeong S H, Kim Y J, Kong K H, et al. Metals and Materials Internatio-nal, 2018, 24(2), 391.
32 Yang Z Q, Ma A B, Liu H. Materials Characterization, 2019, 152, 213.
33 Lun Y C, Wang L P, Zhao S C, et al. Heat Treatment of Metals, 2015, 41(11), 129 (in Chinese).
伦玉超, 王丽萍, 赵思聪, 等.金属热处理, 2015, 41(11), 129.
34 Guo L, Liang X P, Li H Z, et al. Hunan Nonferrous Metals, 2018, 34(3), 51 (in Chinese).
郭亮, 梁霄鹏, 李慧中, 等.湖南有色金属, 2018, 34(3), 51.
35 Wilson R, Bettles C J, Muddle B C, et al. Materials Science Forum, 2003, 419-422, 267.
36 Smola B, Stulíková I, Buch F V, et al. Materials Science and Enginee-ring: A, 2002, 324(1-2), 113.
37 Issa A, Saal J E, Wolverton C. Acta Materialia, 2015, 83, 75.
38 Wang K, Du X X, Wang J F, et al. Materials Science and Engineering: A, 2020, 790, 1.
39 Xu S W, Matsumoto N, Kamado S, et al.Scripta Materialia, 2009, 61(3), 249.
40 Jain J, Poole W J, Sinclair C W, et al.Scripta Materialia, 2010, 62(5), 301.
41 Wang Y D, Wu G H, Liu W C, et al.Transactions of Nonferrous Metals Society of China, 2013, 23, 3611.
42 Tang Y J, Zhang Z Y, Jin L, et al.Transactions of Nonferrous Metals So-ciety of China, 2014, 24(1), 8 (in Chinese).
汤伊金, 章桢彦, 靳丽, 等.中国有色金属学报, 2014, 24(1), 8.
43 Wang B, Xin R, Huang G, et al.Materials Science and Engineering: A, 2012, 534, 588.
44 Tang W N, Park S S, You B S.Materials and Design, 2011, 32(6), 3537.
45 Peng C H, Chang H, Hu R, et al.Journal of Aeronautical Materials, 2011, 31(2), 8 (in Chinese).
彭聪辉, 常辉, 胡锐, 等.航空材料学报, 2011, 31(2), 8.
46 Styczynski A, Hartig C, Bohlen J, et al.Scripta Materialia, 2004, 50, 943.
47 Wei L J, Yang S Z, Xia W J, et al.Materials for Mechanical Engineering, 2012, 36(11), 14 (in Chinese).
魏琳俊, 杨寿智, 夏伟军, 等.机械工程材料, 2012, 36(11), 14.
48 Kim W J, Yoo S J, Chen Z H, et al. Scripta Materialia, 2009, 60(10), 897.
49 Xu Z C, Shi Q N, Feng Z X, et al. Hot Working Technology, 2017, 46(5), 41 (in Chinese).
徐志超, 史庆南, 冯中学,等.热加工工艺, 2017, 46(5), 41.
50 Wang K, Wang J, Peng X, et al. Materials Science and Engineering: A, 2019, 748, 100.
51 Wang C, Ma A B, Liu H, et al. Materials Reports A: Review Papers, 2019, 33(10), 3298 (in Chinese).
王策, 马爱斌, 刘欢, 等. 材料导报:综述篇, 2019, 33(10), 3298.
52 Zeng X Q, Zhu Q C, Li Y X, et al. Materials China, 2019, 3(38), 193 (in Chinese).
曾小勤, 朱庆春, 李扬欣, 等.中国材料进展, 2019, 3(38), 193.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed