Effect of Pre-aging on Microstructure and Mechanical Properties of Wrought Magnesium Alloy
CHE Bo1, LU Liwei1,2, WU Muyi3, KANG Wei1, TANG Lunyuan4, FANG Daqing5
1 College of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China 2 Hunan Provincial Overseas-wisdom Innovation Center of New Energy Vehicle in Industrial-academic-research Cooperation, Hunan University of Science and Technology, Xiangtan 411201,China 3 Jiangnan Industrial Group Co., Ltd., Xiangtan 411207,China 4 Hunan Rongtuo New Material Research Co., Ltd., Xiangtan 411100,China 5 Jiaozuo Yirui Magnesium Alloy Co., Ltd., Jiaozuo 454950, China
Abstract: Comparing with cast Mg alloy, wrought Mg alloy has higher strength, better ductility and more diversified mechanical properties, and it consequently meet the diversified application requirements of structural parts. However, its comprehensive applications are limited by low absolute strength and poor plastic deformation capacity. Recent studies have found that pre-aging treatment can significantly improve the comprehensive mechanical properties of wrought Mg alloy. Therefore, summarizing the effects of pre-aging on wrought Mg alloys has important theoretical reference value and practical guiding significance. Pre-aging is an aging method for aging treatment before plastic processing. The pre-aging treatment can control the size, shape, distribution and orientation of the precipitated phase through under-aged, peak-aged and over-aging processes, and the precipitated phase plays an important role in improving the microstructure and mechanical properties of the alloys during subsequent plastic processing. The precipitated phase provided by pre-aging treatment can be severed as nucleation sites for dynamic recrystallization during subsequent plastic processing, thus promoting dynamic recrystallization, refining grains, activating non-basal slip and weakening basal texture. Moreover, the precipitated phase at grain boun-dary can obviously restrain the grain growth and effectively hinder the dislocation movement, and can also increase the accumulation of dislocations and the number of low-angle grain boundaries. Besides, increasing the precipitation can reduce the grain size and inhibit the nucleation and growth of {1012} extension twin, and also add the content of the {1011} contraction twin and the {1011}-{1012} double twin, which can increase nucleation sites of dynamic recrystallization and change the grain orientation, and then greatly increases the strength, yield stress and peak stress of the alloy. Meanwhile, the alloy ductility is also guaranteed, thereby greatly improving the comprehensive mechanical properties of Mg alloy. This article summarizes and analyzes the effects of pre-aging on microstructure and properties of wrought Mg alloys for Mg-Al, Mg-Zn, Mg-Sn and Mg-RE alloys. The review is mainly focused on the deformation process of compression, tensile, extrusion and rolling, which can provide va-luable reference for the preparation of Mg alloy with excellent comprehensive mechanical properties. In addition, the paper points out the development trend and research emphasis of the pre-aged wrought Mg alloy in the future.
1 Zhong L X, Yang M B, Yuan S, et al. Journal of Chongqing University of Technology (Natural Science), 2019, 33(8), 90 (in Chinese). 钟罗喜, 杨明波, 袁淑, 等.重庆理工大学学报(自然科学), 2019, 33(8), 90. 2 Guo F, Zhu H, Zhang Z, et al. Joumal of Chongqing University of Technology (Natural Science), 2020, 34(9),141 (in Chinese). 郭非, 祝寒, 张震, 等.重庆理工大学学报(自然科学), 2020, 34(9),141. 3 Xi G Q, Chen Y, Chen S, et al. Journal of Chongqing University of Technology (Natural Seience), 2020, 34(9), 147 (in Chinese). 席国强, 陈艺, 陈爽, 等.重庆理工大学学报(自然科学), 2020, 34(9), 147. 4 Min X G, Sun Y S, Du W W, et al.Journal of Southeast University(Na-tural Science Edition), 2002, 32(3), 1 (in Chinese). 闵学刚, 孙扬善, 杜温文, 等.东南大学学报(自然科学版), 2002, 32(3), 1. 5 Tang W, Han E H, Xu Y B, et al.Acta Metallurgica Sinica, 2005, 41(11), 1199 (in Chinese). 唐伟, 韩恩厚, 徐永波, 等.金属学报, 2005, 41(11), 1199. 6 Zhao Y W. Effect of thermo-mechanical treatment on microstructure and properties of AZ91D magnesium alloy. Master's Thesis, Chongqing University, China, 2006 (in Chinese). 赵煜炜. 形变热处理对AZ91D镁合金组织和性能的影响. 硕士学位论文, 重庆大学,2006. 7 Zhu T, Huang G J, Zhou F, et al.Materials Reports B: Research Papers, 2017, 31(10), 58 (in Chinese). 朱涛, 黄光杰, 周芳, 等. 材料导报:研究篇, 2017, 31(10), 58. 8 Huang W, Li H.Transactions of Materials and Heat Treatment, 2006, 27(2), 37 (in Chinese). 黄巍, 李获.材料热处理学报, 2006, 27(2), 37. 9 Zhang J M, Jiang B L, Wang Z H, et al.Transactions of Materials and Heat Treatment, 2007, 28(6), 63 (in Chinese). 张菊梅, 蒋百灵, 王志虎, 等. 材料热处理学报, 2007, 28(6), 63. 10 Wang M, Wang S R, Wang Y J, et al.Transactions of Materials and Heat Treatment, 2010, 31(6), 95 (in Chinese). 王敏, 王守仁, 王砚军, 等.材料热处理学报, 2010, 31(6), 95. 11 Xu W T, Lu Y L, Zhou D S.Hot Working Technology, 2017, 46(8), 237 (in Chinese). 徐文婷, 卢雅琳, 周东帅.热加工工艺, 2017, 46(8), 237. 12 Sun J, Zhang D F, Tang T, et al. Rare Metal Materials and Engineering, 2017, 46(7), 1768. 13 Jung J G , Park S H , You B S.Journal of Alloys and Compounds, 2015, 627, 324. 14 Huang X T, Li Y H. Journal of Zhongyuan University of Technology, 2016, 27(4), 54 (in Chinese). 黄小婷, 李英华.中原工学院学报, 2016, 27(4), 54. 15 Cai G Y, Deng P H, Wu H H.Transactions of Materials and Heat Treatment, 2011, 32(Supplement), 75 (in Chinese). 蔡刚毅, 邓鹏辉, 吴海宏.材料热处理学报, 2011, 32(增刊), 75. 16 Sun H. Effects of pre-aging treatment on the microstructure and mechanical properties of Mg-RE alloy during hot deformation. Master's Thesis, Central South University, China, 2014 (in Chinese). 孙欢. 预时效对稀土镁合金热变形组织和力学性能的影响. 硕士学位论文, 中南大学, 2014. 17 Liu H. Effect of solution and pre-aging treatment on thermal tensile beha-vior and microstructure of extruded AZ80 magnesium alloy. Master's Thesis, Jiangsu University, China, 2018 (in Chinese). 刘惠. 固溶和预时效处理对挤压AZ80镁合金热拉伸行为及微观组织的影响. 硕士学位论文, 江苏大学, 2018. 18 Jung J G, Park S H, Yu H, et al. Scripta Materialia, 2014, 93, 8. 19 Cheng W, Tian L, Wang H, et al.Materials Science and Engineering: A, 2017, 687, 148. 20 Xu X Y. Effects and mechanisms of the Mg17Al12 phase on the static recrystallization behavior of Mg-Al-Zn alloys. Master's Thesis, Jilin University, China, 2018 (in Chinese). 徐新宇. Mg-Al-Zn系合金中Mg17Al12第二相对静态再结晶行为的影响规律及作用机制. 硕士学位论文,吉林大学, 2018. 21 He B, Hu Y B, Yao Q S. Transactions of Materials and Heat Treatment, 2018, 39(12), 13 (in Chinese). 贺兵, 胡耀波, 姚青山.材料热处理学报, 2018, 39(12), 13. 22 Somekawa H, Singh A, Mukai T, et al. Journal of Materials Research, 2007, 22(4), 965. 23 Yu Z, Huang Y, Mendis C L, et al.Materials Science and Engineering: A, 2015, 642, 23. 24 Zhong L P, Wang Y J, Dou Y C. Journal of Magnesium and Alloys, 2019, 7(4), 637. 25 Xin B P. The effect of two-stage aging on microstructure and properties of ZM6 magnesium alloy. Master's Thesis, Harbin University of Science and Technology, China, 2015 (in Chinese). 辛北平. 双级时效对ZM6镁合金组织和性能的影响. 硕士学位论文, 哈尔滨理工大学, 2015. 26 Li Y N, Jiang W Y, Xin B P, et al. Special-cast and Non-ferrous Alloys, 2015, 35(10), 1097 (in Chinese). 李轶楠, 姜文勇, 辛北平, 等.特种铸造及有色合金, 2015, 35(10), 1097. 27 Yu D, Zhang D, Sun J, et al. Journal of Alloys and Compounds, 2017, 690, 553. 28 Zhang Y, Zhang Z M, Zhang X. Material and Heat Treatment, 2010, 6(39), 139 (in Chinese). 张义, 张治民, 张星. 材料热处理技术, 2010, 6(39), 139. 29 Wang W H, Wu D, Chen R S, et al. Acta metallurgica sinica, 2016, 52(5), 567 (in Chinese). 王文辉, 吴迪, 陈荣石, 等. 金属学报, 2016, 52(5), 567. 30 Xu S W, Matsumoto N, Kamado S, et al. Materials Science and Enginee-ring: A, 2009, 517(1-2), 354. 31 Jeong S H, Kim Y J, Kong K H, et al. Metals and Materials Internatio-nal, 2018, 24(2), 391. 32 Yang Z Q, Ma A B, Liu H. Materials Characterization, 2019, 152, 213. 33 Lun Y C, Wang L P, Zhao S C, et al. Heat Treatment of Metals, 2015, 41(11), 129 (in Chinese). 伦玉超, 王丽萍, 赵思聪, 等.金属热处理, 2015, 41(11), 129. 34 Guo L, Liang X P, Li H Z, et al. Hunan Nonferrous Metals, 2018, 34(3), 51 (in Chinese). 郭亮, 梁霄鹏, 李慧中, 等.湖南有色金属, 2018, 34(3), 51. 35 Wilson R, Bettles C J, Muddle B C, et al. Materials Science Forum, 2003, 419-422, 267. 36 Smola B, Stulíková I, Buch F V, et al. Materials Science and Enginee-ring: A, 2002, 324(1-2), 113. 37 Issa A, Saal J E, Wolverton C. Acta Materialia, 2015, 83, 75. 38 Wang K, Du X X, Wang J F, et al. Materials Science and Engineering: A, 2020, 790, 1. 39 Xu S W, Matsumoto N, Kamado S, et al.Scripta Materialia, 2009, 61(3), 249. 40 Jain J, Poole W J, Sinclair C W, et al.Scripta Materialia, 2010, 62(5), 301. 41 Wang Y D, Wu G H, Liu W C, et al.Transactions of Nonferrous Metals Society of China, 2013, 23, 3611. 42 Tang Y J, Zhang Z Y, Jin L, et al.Transactions of Nonferrous Metals So-ciety of China, 2014, 24(1), 8 (in Chinese). 汤伊金, 章桢彦, 靳丽, 等.中国有色金属学报, 2014, 24(1), 8. 43 Wang B, Xin R, Huang G, et al.Materials Science and Engineering: A, 2012, 534, 588. 44 Tang W N, Park S S, You B S.Materials and Design, 2011, 32(6), 3537. 45 Peng C H, Chang H, Hu R, et al.Journal of Aeronautical Materials, 2011, 31(2), 8 (in Chinese). 彭聪辉, 常辉, 胡锐, 等.航空材料学报, 2011, 31(2), 8. 46 Styczynski A, Hartig C, Bohlen J, et al.Scripta Materialia, 2004, 50, 943. 47 Wei L J, Yang S Z, Xia W J, et al.Materials for Mechanical Engineering, 2012, 36(11), 14 (in Chinese). 魏琳俊, 杨寿智, 夏伟军, 等.机械工程材料, 2012, 36(11), 14. 48 Kim W J, Yoo S J, Chen Z H, et al. Scripta Materialia, 2009, 60(10), 897. 49 Xu Z C, Shi Q N, Feng Z X, et al. Hot Working Technology, 2017, 46(5), 41 (in Chinese). 徐志超, 史庆南, 冯中学,等.热加工工艺, 2017, 46(5), 41. 50 Wang K, Wang J, Peng X, et al. Materials Science and Engineering: A, 2019, 748, 100. 51 Wang C, Ma A B, Liu H, et al. Materials Reports A: Review Papers, 2019, 33(10), 3298 (in Chinese). 王策, 马爱斌, 刘欢, 等. 材料导报:综述篇, 2019, 33(10), 3298. 52 Zeng X Q, Zhu Q C, Li Y X, et al. Materials China, 2019, 3(38), 193 (in Chinese). 曾小勤, 朱庆春, 李扬欣, 等.中国材料进展, 2019, 3(38), 193.