Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20045-20051    https://doi.org/10.11896/cldb.21010201
  金属与金属基复合材料 |
静轴肩搅拌摩擦焊2A14-T4铝合金T形接头的组织和性能
杨海峰1,2, 赵洪运1,2, 许欣欣2, 孙广达1,2, 周利1,2, 赵慧慧3, 刘会杰1
1 哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
2 哈尔滨工业大学(威海) 山东省特种焊接技术重点实验室,威海 264209
3 上海航天设备制造总厂有限公司,上海 200245
Microstructure and Properties of 2A14-T4 Aluminum Alloy T Joint by SSFSW
YANG Haifeng1,2, ZHAO Hongyun1,2, XU Xinxin2, SUN Guangda1,2, ZHOU Li1,2, ZHAO Huihui3, LIU Huijie1
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 Key Laboratory of Special Welding Technology Shandong Province, Harbin Institute of Technology(Weihai), Weihai 264209, China
3 Shanghai Aerospace Equipments Manufacturer Co., Ltd., Shanghai 200245, China
下载:  全 文 ( PDF ) ( 13707KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用静轴肩搅拌摩擦焊技术实现了8.5 mm厚2A14-T4铝合金T形接头的焊接,研究了接头的宏观成型、显微组织及力学性能。结果表明:焊缝表面呈现光滑无弧纹特征,焊缝外部和内部未发现焊接缺陷;SSFSW T形接头截面焊接区域形貌整体呈现两头宽、中间窄的“开口哑铃”状,焊核区晶粒表现为取向随机的等轴晶,焊核区平均晶粒尺寸表现为第二次焊核区最大,焊接重合区次之,第一次焊核区最小。焊核区再结晶机制以几何动态再结晶为主并伴随有部分连续动态再结晶;热机影响区较窄且晶粒被拉长变形,热影响区组织晶粒长大粗化;焊接过程中第二相粒子的析出粗化造成焊核区硬度降低,硬度最低点出现在第一道焊缝热影响区与热机影响区的交界处;接头的硬度较低区域和结构尺寸引起的应力集中导致T形接头底板与筋板容易萌生裂纹、发生断裂;断口中存在较多的撕裂棱以及大小不一的韧窝,在韧窝中存在尺寸不均匀的第二相颗粒,断口呈现韧性断裂特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海峰
赵洪运
许欣欣
孙广达
周利
赵慧慧
刘会杰
关键词:  2A14-T4铝合金  SSFSW  T形接头  显微组织  力学性能    
Abstract: 2A14-T4 aluminum alloy T joint with a thickness of 8.5 mm was connected by stationary shoulder friction stir welding (SSFSW). The weld formability, microstructures and mechanical properties of T joint were studied. The results showed that the smooth surface with small flash could be obtained and no defects were found in SSFSW welds. The cross section morphology of SSFSW-T joint presents an “open dumbbell” with both ends wide and middle narrow. Recrystallization occurred and the grain size decreased obviously in the weld nugget zone (WNZ). The average grain size was the largest in the second weld nugget zone (WNZ2), followed by the weld nugget overlap zone (WNOZ) and the smallest grains were in the first weld nugget zone (WNZ1). The recrystallization mechanism in WNZ is mainly geometric dynamic recrystallization (GDRX) and partially continuous dynamic recrystallization (CDRX). The thermo-mechanically affected zone (TMAZ) is narrow and the grains were elongated. And the grain coarsening occurred in heat affected zone (HAZ). During the welding process, the second phase particles were precipitated and coarsened, resulting in the decreasing hardness of WNZ. The fracture locations of T joint bottom plate and reinforcement plate were in the lowest hardness zone located in the borderline between TMAZ and HAZ and stress concentration locations in tensile test, respectively. Tear ridge and deformation dimples of different sizes could be observed in the fracture surface. And the second phase particles appear in the dimples, showing the characteristics of ductile fracture.
Key words:  2A14-T4 aluminum alloy    SSFSW    T joint    microstructure    mechanical property
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG457.14  
基金资助: 国防基础科研重点项目(JCKY2017203B066)
通讯作者:  zhouli@hitwh.edu.cn   
作者简介:  杨海峰,博士研究生,就读于哈尔滨工业大学,研究方向为轻质合金搅拌摩擦焊连接。
周利,哈尔滨工业大学(威海)副教授,2010年毕业于哈尔滨工业大学材料加工工程专业,获得博士学位,主要从事轻质合金搅拌摩擦焊设备与工艺开发工作,重点研究铝、镁、钛等同种及异种金属搅拌摩擦焊连接。在国内外重要期刊发表论文50余篇,申报及授权发明专利30余项。
引用本文:    
杨海峰, 赵洪运, 许欣欣, 孙广达, 周利, 赵慧慧, 刘会杰. 静轴肩搅拌摩擦焊2A14-T4铝合金T形接头的组织和性能[J]. 材料导报, 2021, 35(20): 20045-20051.
YANG Haifeng, ZHAO Hongyun, XU Xinxin, SUN Guangda, ZHOU Li, ZHAO Huihui, LIU Huijie. Microstructure and Properties of 2A14-T4 Aluminum Alloy T Joint by SSFSW. Materials Reports, 2021, 35(20): 20045-20051.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010201  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20045
1 Lu X, Tang Z Y, Lei Y P, et al. Rare Metal Materials and Engineering,2009,38(a03),223(in Chinese).
刘昕,唐振云,雷永平,等.稀有金属材料与工程,2009,38(a03),223.
2 Yang H F, Xu X X, Guo Z S, et al. Welding Joining,2019(3),12(in Chinese).
杨海峰,许欣欣,郭孜颂,等.焊接,2019(3),12.
3 Qi J F, Niu Z, Zhang D Y, et al.Chinese Journal of Lasers,2008,35(2),297.
4 Hu B, Richardson I M. Materials Science & Engineering A,2007,459(1-2),94.
5 Ma Z Y, Sharma S R, Mishra R S. Materials Science & Engineering A,2006,433(1-2),269.
6 Fratini L, Buffa G, Shivpuri R. Materials & Design,2009,30(7),2435.
7 Cui L, Yang X, Zhou G, et al. Materials Science & Engineering A,2012,543,58.
8 Threadgill P L, Leonard A J, Shercliff H R, et al. International Materials Reviews,2009,54(2),49.
9 Rai R, De A, Bhadeshia H K D H, et al. Science & Technology of Wel-ding & Joining,2011,16(4),325.
10 Acerra F, Buffa G, Fratini L, et al. International Journal of Advanced Manufacturing Techno-logy,2010,48(9-12),1149.
11 Buffa G,Fratini L, Arregi B, et al. International Journal of Material Forming,2010,3(S1),1039.
12 Cui L, Yang X, Xie Y, et al. Materials & Design,2013,51,161.
13 Hou X P, Yang X Q, Cui L, et al. The Chinese Journal of Nonferrous Metals,2013,23(11),3048(in Chinese).
侯晓鹏,杨新岐,崔雷,等.中国有色金属学报,2013,23(11),3048.
14 Fratini L, Micari F, Squillace A, et al. Key Engineering Materials,2007,344(2),751.
15 Zhao Y, Zhou L L, Wang Q Z, et al. Materials & Design,2014,53(1),106.
16 Russell M J, Threadgill P L, Thomas M J, et al. In: Conference Record of the 2008 7th World Conference on Friction Stir Welding. Kyoto, Japan,2008,pp.1095.
17 Davies P S, Wynne B P, Rainforth W M, et al. Metallurgical and Materials Transactions A,2011,42(8),2278.
18 Penalva M L, Otaegi A, Pujana J, et al. In: Conference Record of the 1st International Joint Symposium on Joining and Welding. Osaka, Japan,2013,pp.477.
19 Gascoyne J S. A microstructural investigation into the stationary shoulder corner friction stir welding of aluminium alloys. Ph.D. Thesis, The University of Sheffield, UK,2014.
20 Sun T, Roy M J, Strong D, et al. Journal of Materials Processing Techno-logy,2018,263,256.
21 Ji H, Xu M, Yao J S, et al. Electric Welding Machine,2013,43(9),37(in Chinese).
吉华,徐萌,姚君山,等.电焊机,2013,43(9),37.
22 Li D, Yang X Q, Cui L, et al. Science and Technology of Welding and Joining,2015,20(8),650.
23 Hao Y F, Ma J B, Bi H S, et al. Transactions of the China Welding Institution,2019,40(7),48(in Chinese).
郝云飞,马建波,毕煌圣,等.焊接学报,2019,40(7),48.
24 Jata K V, Semiatin S L. Scripta Materialia,2000,43(8),9.
25 Su J Q, Nelson T W, Mishra R, et al. Acta Materialia,2003,51(3),713.
26 Prangnell P B, Heason C P. Acta Materialia,2005,53(11),3179.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed