Abstract: The mixed powders of copper-plated graphene reinforced TC4 titanium were prepared by ultrasonic agitation and ball grinding. After pressing the composite powders, the graphene titanium-based bulk was produced by the microwave sintering. The influence of graphene content on the microstructure and mechanical properties of titanium matrix composites was studied by X-ray diffraction, scanning electron microscope, energy spectrum analysis, microhardness, room temperature compression, and frictional wear. The results prove that: Ti2Cu and TiC phase are detected in all the composites with different contents. When the content of graphene is 0.5%, the GNPs phase appears, and the higher the GNPs content, the stronger the phase peak. As the content of graphene increases, the relative density, microhardness, compressive strength at room temperature and wear resistance of titanium matrix composites increase first and then decrease. Among them, the performance of the composite is the best when the content of graphene is 0.8%. Compared with the pure Ti6Al4V matrix, the microhardness and compression strength of the titanium matrix composite with 0.8% graphene increase by 80.9% and 69.9% respectively. Compared with the pure Ti6Al4V matrix, the compression strengths of GNPs/Ti6Al4V and GNPs-Cu/Ti6Al4V composites increase by 33.2% and 69.9% respectively. The compressive strength of GNPs-Cu/Ti6Al4V composites prepared by microwave sintering is 41.6% and 22.9% higher than that of vacuum sintering and hot pressing sintering respectively. The wear mechanism of copper-plated graphene reinforced TC4 composite is the coexistence of abrasive and adhesive wear.
1 Poletti C, Balog M, Schubert T, et al. Composites Science & Technology, 2008, 68(9), 2171. 2 Kim Y J, Chung H, Kang S J L.Materials Science & Engineering A, 2002, 333(1), 343. 3 Huang L J, Yang F Y, Hu H T, et al. Materials & Design, 2013, 51(5), 421. 4 Kondoh K, Threrujirapapong T, Imai H, et al. Composites Science & Technology, 2009, 69(7), 1077. 5 Tang C Y, Wong C T, Zhang L N, et al. Journal of Alloys & Compounds, 2013, 557, 67. 6 Even C, Arvieu C, Quenisset J M.Composites Science & Technology, 2008, 68(6), 1273. 7 Luo X, Ji X, Yang Y, et al. Materials Science & Engineering A, 2014, 597(5), 95. 8 Lee C G, Wei X D, Kysar J W, et al. Science, 2008, 321(18), 385. 9 Ruoff R S. Nature, 2007, 448, 457. 10 Liu J, Yan H, Jiang K. Ceramics International, 2013, 39(6), 6215. 11 Lai C W, Sun Y, Yang H, et al. Acta Chimica Sinica, 2013, 71(9), 1201(in Chinese). 来常伟, 孙莹, 杨洪, 等. 化学学报, 2013, 71(9), 1201. 12 Ding X F, Fan T X. Material Reports, 2019, 33(Z1), 67(in Chinese). 丁晓飞, 范同祥. 材料导报, 2019, 33(Z1), 67. 13 Li J L, Wang X D, Wu Y, et al. Chinese Journal of Rare Metals, 2018, 43(3), 252(in Chinese). 李炯利, 王旭东, 武岳, 等. 稀有金属, 2018, 43(3), 252. 14 Qu X N, Zhou M Y, Sun H, et al. Hot Working Technology, 2018, 47 (6), 137(in Chinese). 屈晓妮, 周明扬, 孙浩, 等. 热加工工艺, 2018, 47 (6), 137. 15 Wu Q, Jia C G, Nie J H. Powder Metallurgy Technology, 2012, 30(3), 171(in Chinese). 吴琼, 贾成厂, 聂俊辉. 粉末冶金技术, 2012, 30(3), 171. 16 Li D S, Wu W Z, Qin Qinghua, et al. The Chinese Journal of Nonferrous Metals, 2015(6), 1498(in Chinese). 李多生, 吴文政, Qin Qinghua, 等. 中国有色金属学报, 2015(6), 1498. 17 Yi D H, Feng Y H, Zhang J F, et al. Material Reports A:Review Papers, 2020, 34(5), 09086(in Chinese). 仪登豪, 冯英豪, 张锦芳, 等. 材料导报:综述篇, 2020, 34(5), 09086. 18 Cao Z, Wang X, Li J, et al. Journal of Alloys & Compounds, 2017, 696, 498. 19 Song Y, Chen Y, Liu W W, et al. Materials & Design, 2016, 109, 256. 20 Wang W B. Study on microstructure and properties of microwave sintered aluminum matrix composites. Master's Thesis, Henan University of Science and Technology, China, 2014(in Chinese). 王文彬.微波烧结铝基复合材料组织和性能研究. 硕士学位论文, 河南科技大学, 2014. 21 Su Y, Zuo Q, Yang G, et al. Rare Metal Materials and Engineering, 2017, 46(12), 3882(in Chinese). 苏颖, 左倩, 杨刚, 等. 稀有金属材料与工程, 2017, 46(12), 3882 22 Liu Y B, Liu Y, Zhao Z W, et al. Journal of Alloys & Compounds, 2014, 599(13), 188. 23 Mallikarjuna H M, Kashyap K T, Koppad P G, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(7), 1755. 24 Mallikarjuna H M, Kashyap K T, Koppad P G, et al. International Journal of Minerals Metallurgy and Materials, 2017, 24(9), 1052. 25 Kim H J, Lee S M, Oh Y S, et al. Scientific Reports, 2014, 75(3), 5176. 26 Wang W, Zhou H X, Wang Q J, et al. Ordnance Material Science and Engineering, 2019, 42 (1), 32(in Chinese). 王伟, 周海雄, 王庆娟, 等. 兵器材料科学与工程, 2019, 42 (1), 32.