Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22098-22103    https://doi.org/10.11896/cldb.20090206
  金属与金属基复合材料 |
镀铜石墨烯增强钛基复合材料的组织及性能研究
罗军明, 谢娟, 徐吉林, 邓莉萍
南昌航空大学材料科学与工程学院, 南昌 330063
Microstructure and Properties of Copper-plated Graphene Reinforced Titanium Matrix Composites
LUO Junming, XIE Juan, XU Jilin, DENG Liping
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 4387KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验通过超声搅拌加球磨的方式制备了镀铜石墨烯(GNPs)增强Ti6Al4V(TC4)钛基混合粉体,将粉体压制后采用微波烧结制备GNPs-Cu/Ti6Al4V复合材料。通过X射线衍射、扫描电子显微镜、能谱分析、显微硬度、室温压缩和摩擦磨损等测试手段,研究了石墨烯含量对钛基复合材料微观组织及力学性能的影响。研究结果表明:各石墨烯含量的钛基复合材料均出现Ti2Cu、TiC相,当石墨烯含量为0.5%时出现GNPs相,且含量越高GNPs相的峰越高。随着石墨烯含量增加,钛基复合材料的相对密度、显微硬度、室温压缩强度和耐磨性先增加后降低,其中石墨烯含量为0.8%时复合材料的性能最好。与未加入石墨烯的Ti6Al4V基体相比,石墨烯含量为0.8%的GNPs-Cu/Ti6Al4V复合材料的显微硬度和压缩强度分别提高80.9%、69.9%。GNPs/Ti6Al4V和GNPs-Cu/Ti6Al4V复合材料的压缩强度分别比Ti6Al4V基体高33.2%和69.9%。微波烧结制备GNPs-Cu/Ti6Al4V复合材料的压缩强度分别比真空烧结和热压烧结高41.6%、22.9%。GNPs-Cu/Ti6Al4V复合材料的磨损机制为磨粒磨损与粘着磨损共存。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗军明
谢娟
徐吉林
邓莉萍
关键词:  镀铜石墨烯  钛基复合材料  微波烧结  微观组织  力学性能    
Abstract: The mixed powders of copper-plated graphene reinforced TC4 titanium were prepared by ultrasonic agitation and ball grinding. After pressing the composite powders, the graphene titanium-based bulk was produced by the microwave sintering. The influence of graphene content on the microstructure and mechanical properties of titanium matrix composites was studied by X-ray diffraction, scanning electron microscope, energy spectrum analysis, microhardness, room temperature compression, and frictional wear. The results prove that: Ti2Cu and TiC phase are detected in all the composites with different contents. When the content of graphene is 0.5%, the GNPs phase appears, and the higher the GNPs content, the stronger the phase peak. As the content of graphene increases, the relative density, microhardness, compressive strength at room temperature and wear resistance of titanium matrix composites increase first and then decrease. Among them, the performance of the composite is the best when the content of graphene is 0.8%. Compared with the pure Ti6Al4V matrix, the microhardness and compression strength of the titanium matrix composite with 0.8% graphene increase by 80.9% and 69.9% respectively. Compared with the pure Ti6Al4V matrix, the compression strengths of GNPs/Ti6Al4V and GNPs-Cu/Ti6Al4V composites increase by 33.2% and 69.9% respectively. The compressive strength of GNPs-Cu/Ti6Al4V composites prepared by microwave sintering is 41.6% and 22.9% higher than that of vacuum sintering and hot pressing sintering respectively. The wear mechanism of copper-plated graphene reinforced TC4 composite is the coexistence of abrasive and adhesive wear.
Key words:  copper plated graphene    titanium matrix composite    microwave sintering    microstructure    mechanical property
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TG135.5  
基金资助: 国家自然科学基金(51764041)
通讯作者:  ljmniat@126.com   
作者简介:  罗军明,男,教授,博士,江西省百千万人才。主要从事金属基复合材料、粉末冶金材料和材料表面改性研究,发表论文120余篇,其中SCI和EI收录80余篇,获授权发明专利12项,主持和参加国家和省部级以上科研项目30项,获省部级科学进步奖3项。
引用本文:    
罗军明, 谢娟, 徐吉林, 邓莉萍. 镀铜石墨烯增强钛基复合材料的组织及性能研究[J]. 材料导报, 2021, 35(22): 22098-22103.
LUO Junming, XIE Juan, XU Jilin, DENG Liping. Microstructure and Properties of Copper-plated Graphene Reinforced Titanium Matrix Composites. Materials Reports, 2021, 35(22): 22098-22103.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090206  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22098
1 Poletti C, Balog M, Schubert T, et al. Composites Science & Technology, 2008, 68(9), 2171.
2 Kim Y J, Chung H, Kang S J L.Materials Science & Engineering A, 2002, 333(1), 343.
3 Huang L J, Yang F Y, Hu H T, et al. Materials & Design, 2013, 51(5), 421.
4 Kondoh K, Threrujirapapong T, Imai H, et al. Composites Science & Technology, 2009, 69(7), 1077.
5 Tang C Y, Wong C T, Zhang L N, et al. Journal of Alloys & Compounds, 2013, 557, 67.
6 Even C, Arvieu C, Quenisset J M.Composites Science & Technology, 2008, 68(6), 1273.
7 Luo X, Ji X, Yang Y, et al. Materials Science & Engineering A, 2014, 597(5), 95.
8 Lee C G, Wei X D, Kysar J W, et al. Science, 2008, 321(18), 385.
9 Ruoff R S. Nature, 2007, 448, 457.
10 Liu J, Yan H, Jiang K. Ceramics International, 2013, 39(6), 6215.
11 Lai C W, Sun Y, Yang H, et al. Acta Chimica Sinica, 2013, 71(9), 1201(in Chinese).
来常伟, 孙莹, 杨洪, 等. 化学学报, 2013, 71(9), 1201.
12 Ding X F, Fan T X. Material Reports, 2019, 33(Z1), 67(in Chinese).
丁晓飞, 范同祥. 材料导报, 2019, 33(Z1), 67.
13 Li J L, Wang X D, Wu Y, et al. Chinese Journal of Rare Metals, 2018, 43(3), 252(in Chinese).
李炯利, 王旭东, 武岳, 等. 稀有金属, 2018, 43(3), 252.
14 Qu X N, Zhou M Y, Sun H, et al. Hot Working Technology, 2018, 47 (6), 137(in Chinese).
屈晓妮, 周明扬, 孙浩, 等. 热加工工艺, 2018, 47 (6), 137.
15 Wu Q, Jia C G, Nie J H. Powder Metallurgy Technology, 2012, 30(3), 171(in Chinese).
吴琼, 贾成厂, 聂俊辉. 粉末冶金技术, 2012, 30(3), 171.
16 Li D S, Wu W Z, Qin Qinghua, et al. The Chinese Journal of Nonferrous Metals, 2015(6), 1498(in Chinese).
李多生, 吴文政, Qin Qinghua, 等. 中国有色金属学报, 2015(6), 1498.
17 Yi D H, Feng Y H, Zhang J F, et al. Material Reports A:Review Papers, 2020, 34(5), 09086(in Chinese).
仪登豪, 冯英豪, 张锦芳, 等. 材料导报:综述篇, 2020, 34(5), 09086.
18 Cao Z, Wang X, Li J, et al. Journal of Alloys & Compounds, 2017, 696, 498.
19 Song Y, Chen Y, Liu W W, et al. Materials & Design, 2016, 109, 256.
20 Wang W B. Study on microstructure and properties of microwave sintered aluminum matrix composites. Master's Thesis, Henan University of Science and Technology, China, 2014(in Chinese).
王文彬.微波烧结铝基复合材料组织和性能研究. 硕士学位论文, 河南科技大学, 2014.
21 Su Y, Zuo Q, Yang G, et al. Rare Metal Materials and Engineering, 2017, 46(12), 3882(in Chinese).
苏颖, 左倩, 杨刚, 等. 稀有金属材料与工程, 2017, 46(12), 3882
22 Liu Y B, Liu Y, Zhao Z W, et al. Journal of Alloys & Compounds, 2014, 599(13), 188.
23 Mallikarjuna H M, Kashyap K T, Koppad P G, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(7), 1755.
24 Mallikarjuna H M, Kashyap K T, Koppad P G, et al. International Journal of Minerals Metallurgy and Materials, 2017, 24(9), 1052.
25 Kim H J, Lee S M, Oh Y S, et al. Scientific Reports, 2014, 75(3), 5176.
26 Wang W, Zhou H X, Wang Q J, et al. Ordnance Material Science and Engineering, 2019, 42 (1), 32(in Chinese).
王伟, 周海雄, 王庆娟, 等. 兵器材料科学与工程, 2019, 42 (1), 32.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[3] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[4] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[5] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[6] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[7] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[8] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[9] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[10] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[11] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[12] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[13] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[14] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[15] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed