Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22011-22015    https://doi.org/10.11896/cldb.20090041
  无机非金属及其复合材料 |
CeO2/Bi24O31Br10异质结构的制备及可见光催化性能
丁同悦1, 陈奕桦1, 胡俊俊1, 杨本宏2, 黄智锋2
1 合肥学院生物食品与环境学院,合肥 230601
2 合肥学院分析测试中心,合肥 230601
Preparation of CeO2/Bi24O31Br10 Composite Heterostructure Semiconductor and Its Photocatalytic Performance
DING Tongyue1, CHEN Yihua1, HU Junjun1, YANG Benhong2, HUANG Zhifeng2
1 School of Biology Food and Environmental Engineering, Hefei University, Hefei 230601, China
2 Center of Analysis and Testing, Hefei University, Hefei 230601, China
下载:  全 文 ( PDF ) ( 3734KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 釆用原位沉淀法将CeO2纳米颗粒附着在Bi24O31Br10纳米薄片上制备CeO2/Bi24O31Br10复合半导体。利用SEM、XRD、HR-TEM、UV-Vis DRS、PL等技术对其进行表征。结果表明,CeO2呈现纳米棒状颗粒分布在Bi24O31Br10纳米片表面,形成异质结构;与CeO2复合后,Bi24O31Br10的UV-Vis吸收边发生了红移,增强了Bi24O31Br10对可见光的响应强度,同时改善了Bi24O31Br10的吸附性能。以氙灯作光源,酸性品红(AF)为模拟污染物,考察其光催化降解性能,光催化60 min时CeO2/Bi24O31Br10对AF的降解率达到97.6%, HPLC分析结果表明,AF最终降解成H2O和CO2。CeO2/Bi24O31Br10复合半导体具有良好的光催化稳定性,四次重复使用后,光催化60 min时CeO2/Bi24O31Br10对AF的降解率依然高达91.7%。光催化降解AF的机理探究结果表明,·O2-是光催化降解AF的主要活性物种。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁同悦
陈奕桦
胡俊俊
杨本宏
黄智锋
关键词:  CeO2  Bi24O31Br10  光催化  异质结    
Abstract: CeO2/Bi24O31Br10 composite semiconductors were prepared by attaching CeO2 nanoparticles to Bi24O31Br10 nanosheets via in situ precipita-tion method, and characterized by SEM, XRD, HR-TEM, UV-Vis DRS, PL and other techniques. The results showed that nanorod-like CeO2 particles were evenly distributed on the surface of Bi24O31Br10 nanosheets, forming heterojunction structures. After combined with CeO2, the UV-Vis absorption edge of Bi24O31Br10 red-shifted, which enhanced the visible light response of Bi24O31Br10 and meanwhile improved the adsorption performance of Bi24O31Br10. The photocatalytic performance of CeO2/Bi24O31Br10 was investigated via photocatalytic degradation of acid fuchsin (AF) with xenon lamp as the light source. The result indicated that the degradation rate of AF reached 97.6% after 60 min light irradiation. HPLC analysis results showed that AF was finally degraded to H2O and CO2. CeO2/Bi24O31Br10 composite semiconductor has good photocatalytic stability as the degradation rate of AF retained 91.7% after 4 times of reuse of the same photocatalyst. The photocatalytic mechanism study revealed that ·O2- was the main active species in photocatalytic degradation of AF.
Key words:  CeO2    Bi24O31Br10    photocatalysis    heterojunction
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  O611.62  
基金资助: 安徽省科技攻关后续项目(0392118031);合肥学院研究生创新研究项目(CX201906)
通讯作者:  yangbh@hfuu.edu.cn   
作者简介:  丁同悦,硕士研究生。于2018年至今在合肥学院攻读硕士学位,主要从事光催化领域的研究。
杨本宏,博士,教授。现主要研究方向为无机-有机纳米复合材料、高分子材料和光催化等。主持和参加多个科研项目的研究工作,包括国家自然科学基金项目和省自然科学基金项目。
引用本文:    
丁同悦, 陈奕桦, 胡俊俊, 杨本宏, 黄智锋. CeO2/Bi24O31Br10异质结构的制备及可见光催化性能[J]. 材料导报, 2021, 35(22): 22011-22015.
DING Tongyue, CHEN Yihua, HU Junjun, YANG Benhong, HUANG Zhifeng. Preparation of CeO2/Bi24O31Br10 Composite Heterostructure Semiconductor and Its Photocatalytic Performance. Materials Reports, 2021, 35(22): 22011-22015.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090041  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22011
1 Xie J, Cao Y L, Jia D Z. Journal of Alloys and Compounds, 2020, 832, 154953.
2 Tahir F, Abdul R, Fahed J, et al. Journal of Hazardous materials, 2020, 390, 121623.
3 Hu W Y, Wang X Y, Yuan H, et al. Materials Reports B:Research Papers, 2020, 34(5), 10018(in Chinese).
胡文宇, 王笑乙, 袁欢, 等.材料导报:研究篇, 2020, 34(5), 10018.
4 Liang M X, Yu Y J, Wang Y, et al. Journal of Hazardous Materials, 2020, 391, 27.
5 Song C, Zhao L H, Qi M Y, et al. Chinese Journal of Inorganic Chemi-stry, 2020, 36(3), 521(in Chinese).
宋萃, 赵丽华, 戚明颖, 等.无机化学学报, 2020, 36(3), 521.
6 Wang L, Jia T F, Yan X, et al. Catalysis Today, 2016, 264, 257.
7 Duan F, Wang X F, Tan T T, et al. Physical Chemistry Chemistry Phy-sics, 2016, 18(8), 6113.
8 Gu Y Y, Xiong Y Q, Zhang Q Q, et al. Journal of Central South University, 2018, 25(7), 1619(in Chinese).
古映莹, 熊意球, 张茜茜, 等. 中南大学学报, 2018, 25(7), 1619.
9 Xu B R, Li J, Liu L, et al. Chinese Journal of Catalysis, 2019, 40(5), 713(in Chinese).
徐博冉, 李娟, 刘璐, 等.催化学报, 2019, 40(5), 713.
10 Xu B. Technique & Education, 2017, 31(2), 3(in Chinese).
徐博.技术与教育, 2017, 31(2), 3.
11 Zeng X X, Wan Y Q, Gong X F, et al. Fine Chemicals, 2018, 35(9), 1478(in Chinese).
曾小星, 万益群, 弓晓峰, 等.精细化工, 2018, 35(9), 1478.
12 Wang Y J, Wang Q Y, Zhang H, et al. Separation and Purification Technology, 2020, 242, 116775.
13 Mao D J, Yuan J L, Qu X L, et al. Journal of Catalysis, 2019, 369, 209.
14 Zeng Q D, Xie W, Chen Z H, et al. Journal of Catalysis, 2020, 10(2), 257.
15 Xia Y M, Su J B, He Z M. Journal of Electronic Materials, 2019, 48(6), 3890.
16 He Z M, Xia Y M, Su J B, et al. Optical Materials, 2019, 8(8), 4284.
17 Jiang Z, Xiao C, Yin X Y, et al. Ceramics International, 2020, 46(8), 10771.
18 Chen X, Lu G L, Ji J J, et al. Journal of Synthetic Crystals, 2020, 49(1), 62(in Chinese).
陈霞, 陆改玲, 计晶晶, 等.人工晶体学报, 2020, 49(1), 62.
19 Ma T, Zhu C, Liu C B, et al. Acta Materiae Compositae Sinica, 2020, 26(4), 1(in Chinese).
马恬, 朱晨, 刘成宝, 等.复合材料学报, 2020, 26(4), 1.
20 Zhang H L, Ding L, Long H M, et al. Journal of Rare Earths, 2020, 38(8), 883.
21 Sun T Y, Zhao Z W, Shi W X, et al. Acta Scientiae Circumstantiae, 2018, 38(8), 318(in Chinese).
孙天一, 赵志伟, 时文歆, 等.环境科学学报, 2018, 38(8), 318.
22 Yang H, Xu B, Yuan S, et al. Applied Catalysis B-environmental, 2019, 243, 513.
23 Li Y F, Xie B, Wang G W. Journal of Functional Materials, 2019, 50(12), 12051(in Chinese).
李友凤, 谢波, 王光伟.功能材料, 2019, 50(12), 12051.
24 Cao Y Y, Hang S B, Yin J Z. Journal of Molecular Catalysis (China), 2016, 30(2), 159(in Chinese).
曹亚亚, 黄少斌, 尹佳芝.分子催化, 2016, 30(2), 159.
25 Li Y P, Wang X J, Zhao J, et al. Materials Reports A:Review Papers, 2020, 34(8), 15033(in Chinese).
李玉佩, 王晓静, 赵军, 等.材料导报:综述篇,2020,34(8),15033.
26 Yu F C, Nan D M, Song T Y, et al. Materials Reports B:Research Papers, 2020, 34(4), 8003(in Chinese).
于富成, 南冬梅, 宋天云, 等.材料导报:研究篇, 2020, 34(4), 8003.
27 Li X, Zhang Y, Zhang Y Y, et al. Materials Reports B:Research Papers, 2020, 34(9), 18019(in Chinese).
郦雪, 张燕, 张玉琰, 等.材料导报:研究篇, 2020, 34(9), 18019.
28 Lou X, Shang J, Wang L, et al. Journal of Materials Science & Technology, 2017, 33(3), 281.
29 Zhu Y F, Huang X G, Zhu W X, et al. Materials Reports B:Research Papers, 2020, 34(1), 2147(in Chinese).
祝一锋, 黄小钢, 朱文仙, 等.材料导报:研究篇, 2020, 34(1), 2147.
30 Liu Y X, Wang M, Sheng M, et al. Journal of Inorganic Materials, 2020, 36(1),142.
31 Huang J T, Cui C N, Yan G Y, et al. Chinese Journal of Structural Chemistry, 2018, 37(4), 611(in Chinese).
黄继涛, 崔春娜, 颜桂炀, 等.结构化学, 2018, 37(4), 611.
[1] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[2] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[3] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 胡绍争, 王菲, 李政, 马宏飞, 李萍. 新型全光谱响应W18O49/g-C3N4异质结催化剂的构建及光催化降解有机染料性能研究[J]. 材料导报, 2021, 35(8): 8011-8016.
[6] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[7] 浦娟, 薛松柏, 张雷, 吴铭方, 龙伟民, 王水庆, 钱似舰, 林铁松. CeO2对Ag30CuZnSn药芯银钎料润湿性能及钎焊接头组织与性能的影响[J]. 材料导报, 2021, 35(8): 8134-8139.
[8] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[9] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[10] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[11] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[12] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[13] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[14] 陈侣存, 崔雯, 陈鹏, 李康璐, 董帆, 王法理. 宽带隙金属氧化物材料光催化降解苯系物:反应机理和改性策略[J]. 材料导报, 2021, 35(21): 21001-21011.
[15] 张中伟, 郭瑞堂, 秦阳, 郭德宇, 潘卫国. 金属有机框架材料在光催化还原CO2中的应用[J]. 材料导报, 2021, 35(21): 21058-21070.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed