Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4017-4022    https://doi.org/10.11896/cldb.19110052
  无机非金属及其复合材料 |
高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究
李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明
西南民族大学电气信息工程学院,信息材料四川省高校重点实验室,成都 610041
Facile Synthesis and Study of High-efficiency Mn/ZnO-Ag Nano-composite Photocatalytic System
LI Jing, LUO Kaiyi, HU Wenyu, LIU Yutong, YUAN Huan, ZHANG Qiuping, WANG Xiaoyi, XU Ming
Key Laboratory of Information Materials of Sichuan Province, School of Electrical and Information Engineering, Southwest Minzu University, Chengdu 610041,China
下载:  全 文 ( PDF ) ( 5182KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本研究使用简易高分子网络凝胶法制备了不同Mn含量掺杂的ZnO及Mn、Ag共掺的ZnO纳米光催化剂。在模拟太阳光下通过降解有机染料亚甲基蓝(MB)来研究样品的光催化性能。XRD和SEM证实,Mn的掺入减小了样品的晶粒尺寸,但改善了样品的颗粒分布。通过XPS能谱发现催化剂中存在Mn2+和Mn3+, 且随Mn离子掺杂量的增加,Mn3+/Mn2+比例增大。PL光谱显示,Mn/ZnO-Ag体系的发光强度较纯ZnO显著降低,其中当Mn浓度为1%(摩尔分数)时展现出最高效的光生载流子分离。结果表明,Mn掺杂显著增强了ZnO对可见光的吸收,但在一阶光降解动力学方程中并未发现显著的光催化活性提升,而Mn/ZnO-Ag样品在保持较好光学性能的同时大幅提高了ZnO的光催化活性。结合光催化测试结果发现,Mn/ZnO-Ag样品光催化性能的提升与其对可见光利用率的提高、Mn离子间价态变化及Mn离子与Ag粒子间的协同作用有关。这为系统性提升ZnO的光催化活性提供了一种有用的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李靖
罗凯怡
胡文宇
刘禹彤
袁欢
张秋平
王笑乙
徐明
关键词:  高分子网络凝胶  Mn/ZnO-Ag体系  光催化  价态变化  协同作用    
Abstract: We demonstrated the Mn doped ZnO (Mn/ZnO) and (Mn, Ag) co-doped ZnO photocatalyst with different Mn concentrations, both samples were fabricated by facile polymer network gel method. The photocatalytic activity of the samples were characterized by the degradation of methylene blue (MB) pollutant under the simulated sunlight illumination. XRD and SEM identified that Mn doping decreased the grain size, but improved the particle distribution of the sample. XPS spectra showed the Mn2+ and Mn3+ valence states coexisted in the samples, the ratio of Mn3+/Mn2+ was raised with the increase of Mn doping amount. Comparing with pure ZnO nano-particles, the Mn/ZnO-Ag nano-particles depicted a weaker luminescence intensity, and the most effective photogenerated charge separation was emerged when Mn doping concentration reached 1mol%. The results manifested the Mn doping could significantly enhance the optical absorption in visible region, however, no significant increases of Mn doped ZnO photocatalytic activity were observed in the first order kinetic function. the Mn/ZnO-Ag simples demonstrated outstanding perfromance of photocatalytic activity while maintaining excellent optical performance. In the combination of characterization results, the improvement of photocatalytic activity of the samples was strongly influenced by the enhancement of visible utilization, the change of valence state between Mn ions and the synergy between Mn ions and Ag particles. This study provides a useful pathway to systematically enhance the photocatalytic activity of ZnO.
Key words:  polymer network gel method    Mn/ZnO-Ag system    photocatalysis    change of valence state    synergistic effect
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  O614  
基金资助: 四川省学术带头人培养基金项目(26727502);四川省科技厅应用基础研究重点项目(2017JY0349);西南民族大学研究生创新型科研项目(CX2019SZ17)
通讯作者:  hsuming_2001@aliyun.com   
作者简介:  李靖,西南民族大学材料学硕士研究生,主要从事氧化物功能材料的研究。
徐明,西南民族大学教授。2000年7月毕业于中国科学院物理研究所,获凝聚态物理专业博士学位,先后在奥地利、比利时、新加坡从事博士后研究。已在物理或材料的国际主流刊物上发表SCI学术论文100多篇,授权7个中国专利。其中以第一或通讯作者身份完成的部分工作已被写入3部国际权威的专业工具书和15部国际学术专著。
引用本文:    
李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
LI Jing, LUO Kaiyi, HU Wenyu, LIU Yutong, YUAN Huan, ZHANG Qiuping, WANG Xiaoyi, XU Ming. Facile Synthesis and Study of High-efficiency Mn/ZnO-Ag Nano-composite Photocatalytic System. Materials Reports, 2021, 35(4): 4017-4022.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110052  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4017
1 Khan S T, Malik A. Journal of Hazardous Materials, 2019, 363, 295.
2 Lim W Y, Wu H, Lim Y F, et al. Journal of Materials Chemistry A, DOI:10.1039.C8TA02763C.
3 Rezk M Y, Zeitoun M, El-Shazly A N, et al. Journal of Hazardous Materials, 2019, 378, 120679.
4 Russo P, Xiao M, Liang R, et al. Advanced Functional Materials, 2018, 28(13), 1706230.
5 Khalafi T, Buazar F, Ghanemi K. Scientific Reports, 2019, 9(1), 6866.
6 Serrà A, Zhang Y, Sepúlveda B, et al. Applied Catalysis B: Environmental, 2019, 248, 129.
7 Raji R, Gopchandran K G.Journal of Hazardous Materials, 2019, 368, 345.
8 Vaiano V, Matarangolo M, Murcia J J, et al. Applied Catalysis B: Environmental, 2018, 225,197.
9 Singh J, Rathi A, Rawat M, et al.Composites Part B: Engineering, 2019, 166, 361.
10 Jung S, Yong K.Chemical Communications, 2011, 47(9), 2643.
11 Chen X, Li Y, Pan X, et al. Nature Communications, 2016, 7,12273.
12 Khan H R, Murtaza G, Choudhary M A, et al. Solar Energy, 2018, 173, 875.
13 Xu M, Chen Y, Hu W Y, et al. Journal of Physics D: Applied Physics, 2019, 53, 025106.
14 Zhang J X, Yuan H, Liu Y T, et al. Materials Review B:Research Papers, 2019, 33(3), 941(in Chinese).
张嘉羲, 袁欢,刘禹彤,等. 材料导报: 研究篇, 2019, 33(3), 941.
15 Lei J, Xu M C, Hu S J, et al. Sensors and Actuators B: Chemical, 2018, 273, 448.
16 Gao Q, Dai Y, Han B, et al. Applied Surface Science, 2019, 490, 178.
17 Achouri F, Corbel S, Balan L, et al. Materials & Design, DOI:S0264127516304750.
18 Das A, Sahoo R K, Mishra D K, et al. Applied Surface Science, 2019, 467,1059.
19 Bharadwaj S, Pandey A, Yagci B, et al. Chemical Engineering Journal, 2018, 336, 445.
20 Xu K, Wu J, Tan C F, et al. Nanoscale, 2017, 9(32),11574.
21 Lu Y H, Xu M, Xu L X, et al. Journal of Nanoparticle Research, 2015, 17(9), 350.
22 Liu Y T, Zhang Q P, Xu M, et al. Applied Surface Science, 2019, 476,632.
23 Chen Y, Yu F, Liu Y T, et al.Materials Review B:Research Papers, 2017, 31(12), 120(in Chinese).
陈雨, 余飞, 刘禹彤,等.材料导报:研究篇, 2017, 31(12),120.
24 Manikandan D, Boukhvalov D W, Amirthapandian S, et al. Physical Chemistry Chemical Physics, 2018, 20(9), 6500.
25 Wang Y, Cheng J, Yu S, et al. Scientific Reports, 2016, 6, 32711.
26 Kadam A N, Kim T G, Shin D S, et al. Journal of Alloys and Compounds, 2017, 710, 102.
27 Borysiewicz M A, Ekielski M, Ogorzałek Z, et al. Nanoscale, 2017, 9(22), 7577.
28 Lu Y, Lin Y, Xie T, et al. Nanoscale, 2012, 4(20), 6393.
29 Putri N A, Fauzia V, Iwan S, et al. Applied Surface Science, 2018, 439, 285.
30 Sambandam B, Michael R J V, Manoharan P T. Nanoscale, 2015, 7(33), 13935.
31 Xu P S, Shi C S. Science in China, 2001, 44, 1174.
32 Mittal M, Sharma M, Pandey O P. Solar Energy, 2016, 125, 51.
33 Dou Y, Zhou J, Zhou A, et al. Journal of Materials Chemistry A, 2017, 5(36), 19491.
34 Zhang Q, Xie G, Xu M, et al. Sensors and Actuators B: Chemical, 2018, 259, 269.
[1] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[2] 余嵘, 刘扬, 王增科, 田昭, 吕芙蓉. SAS/AMPS/IA共聚物中官能团对碳酸钙的协同阻垢作用[J]. 材料导报, 2021, 35(2): 2207-2212.
[3] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[4] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[5] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[6] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[7] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[8] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[9] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[10] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[11] 张理元, 尤佳, 钟雅洁, 董志红, 韩炎霖, 孙绪兵, 由耀辉1,2,. CTAB对无机沉淀-胶溶法制备介孔层状TiO2结构与性能的影响[J]. 材料导报, 2020, 34(24): 24014-24018.
[12] 王薇, 刘竟成, 霍旺晨, 王均, 王芊卉. C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水[J]. 材料导报, 2020, 34(23): 23027-23032.
[13] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[14] 李靖, 刘天宝, 朱亚鑫, 王鹏, 堵锡华, 张永才. 溶剂热合成可见光响应硫氮共掺杂TiO2光催化剂及其催化还原水中Cr(Ⅵ)[J]. 材料导报, 2020, 34(21): 21045-21051.
[15] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed