Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21045-21051    https://doi.org/10.11896/cldb.19080212
  材料与可持续发展(三)--环境友好材料与环境修复材料* |
溶剂热合成可见光响应硫氮共掺杂TiO2光催化剂及其催化还原水中Cr(Ⅵ)
李靖1,*, 刘天宝1, 2, 朱亚鑫1, 王鹏1, 堵锡华1, 张永才3
1 徐州工程学院材料与化学工程学院,徐州221111;
2 伊犁师范大学化学与环境科学学院,伊宁 835000;
3 扬州大学化工学院,扬州 225002
Solvothermal Synthesis of Visible-light Driven S,N Co-doped Titanium Dioxide Photocatalyst and Photocatalytic Reduction of Aqueous Cr(Ⅵ)
LI Jing1,*, LIU Tianbao1,2, ZHU Yaxin1, WANG Peng1, DU Xihua1, ZHANG Yongcai3,
1 School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221111, China
2 School of Chemistry and Environmental Science, Yili Normal University,Yining 835000, China
3 School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
下载:  全 文 ( PDF ) ( 8177KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别以硫代乙酰胺和硝酸为硫源和氮源,通过一步溶剂热法制得硫氮共掺杂改性二氧化钛催化剂,并通过XRD、TEM、XPS、UV-vis、N2吸附-脱附和光电流测试硫氮共掺杂二氧化钛(SN-TiO2)的结构、组成和光电性质。结果显示:N和S元素分别以间隙掺杂形成了O-Ti-N键或通过取代晶格结点的Ti4+形成了Ti-O-S键,从而形成新的杂质能级,得到禁带宽度减小、可见光吸收增强、载流子迁移速率加快的锐钛矿相SN-TiO2纳米粉。以Cr(Ⅵ)为模拟污染物,评估了A-SN-TiO2的可见光催化性能,并将其与硫脲为硫源制备的B-SN-TiO2、S-TiO2、N-TiO2和TiO2的光催化活性进行了对比。光催化和ESR测试结果显示,A-SN-TiO2具有更高的催化活性,在光照60 min后,A2-SN-TiO2对Cr(Ⅵ)的还原率高达100%。此外,研究还发现SN-TiO2可见光催化还原Cr(Ⅵ)的主要活性物质为·O2-
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李靖
刘天宝
朱亚鑫
王鹏
堵锡华
张永才
关键词:  共掺杂  二氧化钛  可见光响应  六价铬  光催化    
Abstract: An unique one-step solvothermal route, which utilized thioacetamide and nitric acid as the sulphur and nitrogen source, was proposed for the synthesis of S-N co-doped TiO2 nanocrystals. The structures, composition, BET specific surface area and optical properties of SN-TiO2 were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, N2 adsorption-desorption isotherms and photocurrent measure. It's demonstrated that anatase phase SN-TiO2 nanopowders with enhanced visible-light absorption, reduced bandgap and fast mobility of photogenerated carriers, and Ti4+ was substituted in the TiO2 lattice by cationic S6+ and formed a new bond of Ti-O-S, and interstitially doped nitrogen atoms induced the formation of O-Ti-N bonds. The photocatalytic properties of A-SN-TiO2 were tested for the reduction of Cr(Ⅵ) in water under both UV and visible light (λ>420 nm) irradiation in the absence of any sacrificial reagents, and compared with those of TiO2, S-TiO2, N-TiO2 and B-SN-TiO2 prepared with thiourea. The photocatalytic experiments indicated that A-SN-TiO2 exhibit the highest photoreduction efficiency, and noticeably the photocatalytic reduction rate of Cr(Ⅵ) of A2-SN-TiO2 was 100% under visible light irradiation after 60 min. Active species capture experiments and ESR showed that ·O2- is the active radicals in the photocatalysis. Photocatalytic mechanism of A-SN-TiO2reduction of Cr(Ⅵ) was revealed based on the experimental results.
Key words:  co-doped    titanium dioxide    visible light-dirven    hexavalent chromium    photocatalysis
               出版日期:  2020-11-10      发布日期:  2020-11-17
基金资助: 江苏省自然科学基金(BK20171168);江苏省高校自然科学基金重大项目(18KJA430015);江苏省高校青蓝工程优秀青年骨干教师项目(2018)
作者简介:  李靖,徐州工程学院,副教授。2018年毕业于中国矿业大学工业催化博士,主要从事无机功能材料制备、表征,以及光催化处理环境污染物的研究。在国内外学术期刊发表论文20余篇,获批国家发明专利7项。
引用本文:    
李靖, 刘天宝, 朱亚鑫, 王鹏, 堵锡华, 张永才. 溶剂热合成可见光响应硫氮共掺杂TiO2光催化剂及其催化还原水中Cr(Ⅵ)[J]. 材料导报, 2020, 34(21): 21045-21051.
LI Jing, LIU Tianbao, ZHU Yaxin, WANG Peng, DU Xihua, ZHANG Yongcai3,. Solvothermal Synthesis of Visible-light Driven S,N Co-doped Titanium Dioxide Photocatalyst and Photocatalytic Reduction of Aqueous Cr(Ⅵ). Materials Reports, 2020, 34(21): 21045-21051.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080212  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21045
[1] Wang C L, Li F, Yang K, et al.Materials Review A: Review Papers, 2018, 32(10), 3348(in Chinese).
王春来, 李钒, 杨焜, 等.材料导报:综述篇, 2018, 32(10), 3348.
[2] Xie H L, Huang X X. Journal of Chongqing University of Technology (Natural Science), 2019(4), 88(in Chinese).
谢焕玲, 黄小雪. 重庆理工大学学报(自然科学), 2019(4), 88.
[3] Ohno T, Akiyoshi M, Umebayashi T, et al.Applied Catalysis A: General, 2004, 265,115.
[4] Asahi R, Morikawa T, Ohwaki K, et al.Science, 2001, 293(5528), 269.
[5] Shen K, Xue X, Wang X Y, et al.RSC Advances, 2017, 7, 23319.
[6] Klosek S, Raftery D. Jourunal of Physical Chemistry B, 2001, 105(14), 2815.
[7] Wang Y, Hao Y, Cheng H, et al.Journal of Materials Science, 1999, 34(12), 2773.
[8] Ma Y, Zhang J, Tian B,et al. Journal of Hazardous Materials, 2010, 182(1-3),386.
[9] Stacchiola D, Senanayake S D, Liu L, et al.Chemical Reviews, 2013, 113(6), 4373.
[10] Ito S, Zakeeruddin S M, Humphry-Baker R, et al.Advanced Materials, 2006, 18(9), 1202.
[11] Sato S.Chemical Physics Letters,1986, 123,126.
[12] Jong H P, Sungwook K, Allen J B.Nano Letters, 2006, 6(1), 24.
[13] Liu D R. Journal of Inorganic Materials, 2018, 33(4), 409(in Chinese).
刘大锐. 无机材料学报, 2018, 33(4), 409.
[14] Suil I, Alexander O, Regina B, et al.Journal of American Chemical Society, 2007, 129(45),13790.
[15] Chen X, Burda C.Journal of the American Chemical Society, 2008, 130(15), 5018.
[16] Li D, Ohashi N, Hishita S, et al. Journal of Solid State Chemistry, 2005, 178(11), 2393.
[17] Umebayashi T, Yamaki T, Tanaka S, et al.Chemistry Letters, 2003, 4(4), 330.
[18] Han C, Pelaez M, Likodimos V, et al. Applied Catalysis B-Environmental, 2011, 107, 77.
[19] Ohno T, Mitsui T, Matsumura M.Chemistry Letters, 2003, 32,364.
[20] Wei F, Ni L, Cui P.Journal of Hazardous Materials, 2008, 156(1-3), 135.
[21] Xie M Z, Feng Y J, Luan P, et al. Chinese Journal of Inorganic Chemistry, 2014, 30(9), 2081.(in Chinese).
谢明政, 冯玉杰, 栾鹏, 等.无机化学学报, 2014, 30(9),2081.
[22] Eslami A, Amini M M, Yazdanbakhsh A R, et al.Journal of Chemical Technology and Biotechnology, 2016, 91(10), 2693.
[23] Du Y C, Wang X K, Hou R Q, et al.Journal of Inorganic Materials, 2018, 33(5), 557(in Chinese).
杜玉成, 王学凯, 侯瑞琴, 等. 无机材料学报, 2018, 33(5), 557.
[24] Hsu H T, Chen S S, Chen Y S.Separation of Purification Technology, 2011, 80, 663.
[25] Chen G, Sun M, Wei Q, et al.Applied Catalysis B-Environmental, 2012, 125, 282.
[26] Ma H, Shen J, Shi M, et al.Applied Catalysis B-Environmental, 2012, 121-122, 198.
[27] Luo S, Xiao Y, Yang L, et al. Separation of Purification Technology, 2011, 79, 85.
[28] Li J, Wang T X, Du X H.Separation of Purification Technology, 2012, 101, 11.
[29] Yang L, Xiao Y, Liu S, et al.Applied Catalysis B-Environmental, 2010, 94,142.
[30] Mcmanamon C, O'Connell J, Delaney P, et al. Journal of Molecular Catalysis A-Chemical, 2015, 406, 51.
[31] Liu S, Chen X. Journal of Hazardous Materials, 2008, 152(1), 48.
[32] Chen X Y, Lu D F, Lin S F. Chinese Journal of Catalysis, 2012, 33(6), 993(in Chinese).
陈孝云, 陆东芳, 林淑芳.催化学报, 2012, 33(6), 993.
[33] Zhang Y C, Yang M, Zhang G, et al.Applied Catalysis B-Environmental, 2013, 142-143(10), 249.
[34] Valentin C D, Finazzi E, Pacchioni G, et al. Chemical Physics, 2007, 339, 44.
[35] Jang J S, Kimb H G, Jia S M, et al. Journal of Solid State Chemistry, 2006, 179, 1067.
[36] Saha N C, Tompkins H G.Journal of Applied Physics, 1992, 72(7), 3072.
[37] Gai L, Mei Q, Duan X, et al.Journal of Solid State Chemistry, 2013, 199, 271.
[38] Sun X, Li X, Duan C L, et al. Chinese Journal of Inorganic Chemistry, 2007, 23(3), 517(in Chinese).
孙秀云, 李欣, 段传玲, 等.无机化学学报, 2007, 23(3), 517.
[39] Larrubial M A, Ramis G, Busca G.Applied Catalysis B-Environmental, 2000, 27,145.
[40] Yu Y Y, Yu M Y, Zhang Y, et al. Chinese Journal of Inorganic Chemistry, 2013, 29(8), 1657(in Chinese).
于洋洋, 于美燕, 张玥, 等.无机化学学报, 2013, 29(8), 1657.
[41] Zhang J, Hu Y, Jiang X, et al.Journal of Hazardous Materials, 2014, 280,713.
[42] Tang H, Chang S F, Jiang L Y, et al.Ceramics International, 2016, 42(16),18443.
[43] Chen X, Wei J, Hou R, et al.Applied Catalysis B-Environmental, 2016, 188,342.
[44] Gao H T, Liu Y Y, Ding C H, et al.International Journal of Minerals Metallurgy and Materials, 2011, 18, 606.
[45] Xiao J, Xie Y, Cao H, et al.Catalysis Communications, 2015, 66, 10.
[46] Gu L, Wang J, Zou Z, et al.Journal of Hazardous Materials, 2014, 268, 216.
[47] Hao R R, Wang G H, Tang H, et al.Applied Catalysis B-Environmental, 2016, 187, 47.
[48] Ma T J, Wu J, Mi Y D, et al.Separation of Purification Technology, 2017, 183,54.
[49] Bard A J, Parsons R, Jordan J. Standard potentials in aqueous solution, CRC Press, New York, USA, 1985.
[1] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[2] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[3] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[4] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[5] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[6] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[7] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[8] 陈梦瑶, 李焰, 齐建涛. 铬酸盐转化膜性能的研究进展[J]. 材料导报, 2020, 34(21): 21026-21032.
[9] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[10] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[11] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[12] 乔帅, 赵朝成, 贺凤婷, 赵洪飞, 董培, 林飞飞, 台兆鑫. 原位沉积法制备g-C3N4/Ag3PO4复合光催化剂降解卡马西平的性能研究[J]. 材料导报, 2020, 34(19): 19010-19017.
[13] 胡玉林, 李永进, 谢燕春, 阳生红, 张曰理. 掺Ni铁酸铋纳米粉的制备及光催化性能[J]. 材料导报, 2020, 34(18): 18009-18013.
[14] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[15] 王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed