材料与可持续发展(三)--环境友好材料与环境修复材料* 
											                         			                         			                         			                         										 
									
								         
		  							 
          							
          									  								 
        						 
      						
      					 
  					 
  					
    					 
   										
    					溶剂热合成可见光响应硫氮共掺杂TiO2 光催化剂及其催化还原水中Cr(Ⅵ)  
  					  										
						李靖1,* , 刘天宝1, 2 , 朱亚鑫1 , 王鹏1 , 堵锡华1 , 张永才3  
					 
															
					1 徐州工程学院材料与化学工程学院,徐州221111;  
										
						 
   										
    					Solvothermal Synthesis of Visible-light Driven S,N Co-doped Titanium Dioxide Photocatalyst and Photocatalytic Reduction of Aqueous Cr(Ⅵ)  
  					  					  					
						LI Jing1,* , LIU Tianbao1,2 , ZHU Yaxin1 , WANG Peng1 , DU Xihua1 , ZHANG Yongcai 
					 
															
						1 School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221111, China    
									
				
				
					
						
							
								
									
										
								            
                        					 
												
													
													    
													    	
									 
								 
								
													
													
													    
													    		                            						                            																	    摘要  分别以硫代乙酰胺和硝酸为硫源和氮源,通过一步溶剂热法制得硫氮共掺杂改性二氧化钛催化剂,并通过XRD、TEM、XPS、UV-vis、N2 吸附-脱附和光电流测试硫氮共掺杂二氧化钛(SN-TiO2 )的结构、组成和光电性质。结果显示:N和S元素分别以间隙掺杂形成了O-Ti-N键或通过取代晶格结点的Ti4+ 形成了Ti-O-S键,从而形成新的杂质能级,得到禁带宽度减小、可见光吸收增强、载流子迁移速率加快的锐钛矿相SN-TiO2 纳米粉。以Cr(Ⅵ)为模拟污染物,评估了A-SN-TiO2 的可见光催化性能,并将其与硫脲为硫源制备的B-SN-TiO2 、S-TiO2 、N-TiO2 和TiO2 的光催化活性进行了对比。光催化和ESR测试结果显示,A-SN-TiO2 具有更高的催化活性,在光照60 min后,A2-SN-TiO2 对Cr(Ⅵ)的还原率高达100%。此外,研究还发现SN-TiO2 可见光催化还原Cr(Ⅵ)的主要活性物质为·O2 - 。 
																										     
													    
													    	
															 
														 
												  		
															关键词:  
																																																																共掺杂  
																																																																	二氧化钛  
																																																																	可见光响应  
																																																																	六价铬  
																																																																	光催化  
																																  
															 
																																										
															Abstract:  An unique one-step solvothermal route, which utilized thioacetamide and nitric acid as the sulphur and nitrogen source, was proposed for the synthesis of S-N co-doped TiO2  nanocrystals. The structures, composition, BET specific surface area and optical properties of SN-TiO2  were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, N2  adsorption-desorption isotherms and photocurrent measure. It's demonstrated that anatase phase SN-TiO2  nanopowders with enhanced visible-light absorption, reduced bandgap and fast mobility of photogenerated carriers, and Ti4+  was substituted in the TiO2  lattice by cationic S6+  and formed a new bond of Ti-O-S, and interstitially doped nitrogen atoms induced the formation of O-Ti-N bonds. The photocatalytic properties of A-SN-TiO2  were tested for the reduction of Cr(Ⅵ) in water under both UV and visible light (λ >420 nm) irradiation in the absence of any sacrificial reagents, and compared with those of TiO2 , S-TiO2 , N-TiO2  and B-SN-TiO2  prepared with thiourea. The photocatalytic experiments indicated that A-SN-TiO2  exhibit the highest photoreduction efficiency, and noticeably the photocatalytic reduction rate of Cr(Ⅵ) of A2-SN-TiO2  was 100% under visible light irradiation after 60 min. Active species capture experiments and ESR showed that ·O2 -  is the active radicals in the photocatalysis. Photocatalytic mechanism of A-SN-TiO2 reduction of Cr(Ⅵ) was revealed based on the experimental results. 
																																										
															Key words:  
																																																	co-doped 
																	  																																		titanium dioxide 
																	  																																		visible light-dirven 
																	  																																		hexavalent chromium 
																	  																																		photocatalysis 
																																																 
																												
														
															
															        
																    
																    
																																	出版日期:   2020-11-10
															        
																																	发布日期:   2020-11-17
															    															    	
															 
														 
														 																												
															基金资助:  江苏省自然科学基金(BK20171168);江苏省高校自然科学基金重大项目(18KJA430015);江苏省高校青蓝工程优秀青年骨干教师项目(2018) 
																											    																												
															作者简介:   李靖,徐州工程学院,副教授。2018年毕业于中国矿业大学工业催化博士,主要从事无机功能材料制备、表征,以及光催化处理环境污染物的研究。在国内外学术期刊发表论文20余篇,获批国家发明专利7项。 
																											
							                        
													 
														
															引用本文:      
														
															
																														李靖, 刘天宝, 朱亚鑫, 王鹏, 堵锡华, 张永才. 溶剂热合成可见光响应硫氮共掺杂TiO2 光催化剂及其催化还原水中Cr(Ⅵ)[J]. 材料导报, 2020, 34(21): 21045-21051.	
																																									     												                                                                                                        	                                                             
														 
														
															 
														
															链接本文:    
														
															
																
																	
																	http://www.mater-rep.com/CN/10.11896/cldb.19080212
																	 
																 或          
																
																http://www.mater-rep.com/CN/Y2020/V34/I21/21045 															 
														 
													
												 
												
																																	            
									                
																								
					[1] 
					 
					 Wang C L, Li F, Yang K, et al.Materials Review A: Review Papers, 2018, 32(10), 3348(in Chinese).
					 					 
				 
												
					 
					 王春来, 李钒, 杨焜, 等.材料导报:综述篇, 2018, 32(10), 3348.
					 					 
				 
												
					[2] 
					 
					 Xie H L, Huang X X. Journal of Chongqing University of Technology (Natural Science), 2019(4), 88(in Chinese).
					 					 
				 
												
					 
					 谢焕玲, 黄小雪. 重庆理工大学学报(自然科学), 2019(4), 88.
					 					 
				 
												
					[3] 
					 
					 Ohno T, Akiyoshi M, Umebayashi T, et al.Applied Catalysis A: General, 2004, 265,115.
					 					 
				 
												
					[4] 
					 
					 Asahi R, Morikawa T, Ohwaki K, et al.Science, 2001, 293(5528), 269.
					 					 
				 
												
					[5] 
					 
					 Shen K, Xue X, Wang X Y, et al.RSC Advances, 2017, 7, 23319.
					 					 
				 
												
					[6] 
					 
					 Klosek S, Raftery D. Jourunal of Physical Chemistry B, 2001, 105(14), 2815.
					 					 
				 
												
					[7] 
					 
					 Wang Y, Hao Y, Cheng H, et al.Journal of Materials Science, 1999, 34(12), 2773.
					 					 
				 
												
					[8] 
					 
					 Ma Y, Zhang J, Tian B,et al. Journal of Hazardous Materials, 2010, 182(1-3),386.
					 					 
				 
												
					[9] 
					 
					 Stacchiola D, Senanayake S D, Liu L, et al.Chemical Reviews, 2013, 113(6), 4373.
					 					 
				 
												
					[10] 
					 
					 Ito S, Zakeeruddin S M, Humphry-Baker R, et al.Advanced Materials, 2006, 18(9), 1202.
					 					 
				 
												
					[11] 
					 
					 Sato S.Chemical Physics Letters,1986, 123,126.
					 					 
				 
												
					[12] 
					 
					 Jong H P, Sungwook K, Allen J B.Nano Letters, 2006, 6(1), 24.
					 					 
				 
												
					[13] 
					 
					 Liu D R. Journal of Inorganic Materials, 2018, 33(4), 409(in Chinese).
					 					 
				 
												
					 
					 刘大锐. 无机材料学报, 2018, 33(4), 409.
					 					 
				 
												
					[14] 
					 
					 Suil I, Alexander O, Regina B, et al.Journal of American Chemical Society, 2007, 129(45),13790.
					 					 
				 
												
					[15] 
					 
					 Chen X, Burda C.Journal of the American Chemical Society, 2008, 130(15), 5018.
					 					 
				 
												
					[16] 
					 
					 Li D, Ohashi N, Hishita S, et al. Journal of Solid State Chemistry, 2005, 178(11), 2393.
					 					 
				 
												
					[17] 
					 
					 Umebayashi T, Yamaki T, Tanaka S, et al.Chemistry Letters, 2003, 4(4), 330.
					 					 
				 
												
					[18] 
					 
					 Han C, Pelaez M, Likodimos V, et al. Applied Catalysis B-Environmental, 2011, 107, 77.
					 					 
				 
												
					[19] 
					 
					 Ohno T, Mitsui T, Matsumura M.Chemistry Letters, 2003, 32,364.
					 					 
				 
												
					[20] 
					 
					 Wei F, Ni L, Cui P.Journal of Hazardous Materials, 2008, 156(1-3), 135.
					 					 
				 
												
					[21] 
					 
					 Xie M Z, Feng Y J, Luan P, et al. Chinese Journal of Inorganic Chemistry, 2014, 30(9), 2081.(in Chinese).
					 					 
				 
												
					 
					 谢明政, 冯玉杰, 栾鹏, 等.无机化学学报, 2014, 30(9),2081.
					 					 
				 
												
					[22] 
					 
					 Eslami A, Amini M M, Yazdanbakhsh A R, et al.Journal of Chemical Technology and Biotechnology, 2016, 91(10), 2693.
					 					 
				 
												
					[23] 
					 
					 Du Y C, Wang X K, Hou R Q, et al.Journal of Inorganic Materials, 2018, 33(5), 557(in Chinese).
					 					 
				 
												
					 
					 杜玉成, 王学凯, 侯瑞琴, 等. 无机材料学报, 2018, 33(5), 557.
					 					 
				 
												
					[24] 
					 
					 Hsu H T, Chen S S, Chen Y S.Separation of Purification Technology, 2011, 80, 663.
					 					 
				 
												
					[25] 
					 
					 Chen G, Sun M, Wei Q, et al.Applied Catalysis B-Environmental, 2012, 125, 282.
					 					 
				 
												
					[26] 
					 
					 Ma H, Shen J, Shi M, et al.Applied Catalysis B-Environmental, 2012, 121-122, 198.
					 					 
				 
												
					[27] 
					 
					 Luo S, Xiao Y, Yang L, et al. Separation of Purification Technology, 2011, 79, 85.
					 					 
				 
												
					[28] 
					 
					 Li J, Wang T X, Du X H.Separation of Purification Technology, 2012, 101, 11.
					 					 
				 
												
					[29] 
					 
					 Yang L, Xiao Y, Liu S, et al.Applied Catalysis B-Environmental, 2010, 94,142.
					 					 
				 
												
					[30] 
					 
					 Mcmanamon C, O'Connell J, Delaney P, et al. Journal of Molecular Catalysis A-Chemical, 2015, 406, 51.
					 					 
				 
												
					[31] 
					 
					 Liu S, Chen X. Journal of Hazardous Materials, 2008, 152(1), 48.
					 					 
				 
												
					[32] 
					 
					 Chen X Y, Lu D F, Lin S F. Chinese Journal of Catalysis, 2012, 33(6), 993(in Chinese).
					 					 
				 
												
					 
					 陈孝云, 陆东芳, 林淑芳.催化学报, 2012, 33(6), 993.
					 					 
				 
												
					[33] 
					 
					 Zhang Y C, Yang M, Zhang G, et al.Applied Catalysis B-Environmental, 2013, 142-143(10), 249.
					 					 
				 
												
					[34] 
					 
					 Valentin C D, Finazzi E, Pacchioni G, et al. Chemical Physics, 2007, 339, 44.
					 					 
				 
												
					[35] 
					 
					 Jang J S, Kimb H G, Jia S M, et al. Journal of Solid State Chemistry, 2006, 179, 1067.
					 					 
				 
												
					[36] 
					 
					 Saha N C, Tompkins H G.Journal of Applied Physics, 1992, 72(7), 3072.
					 					 
				 
												
					[37] 
					 
					 Gai L, Mei Q, Duan X, et al.Journal of Solid State Chemistry, 2013, 199, 271.
					 					 
				 
												
					[38] 
					 
					 Sun X, Li X, Duan C L, et al. Chinese Journal of Inorganic Chemistry, 2007, 23(3), 517(in Chinese).
					 					 
				 
												
					 
					 孙秀云, 李欣, 段传玲, 等.无机化学学报, 2007, 23(3), 517.
					 					 
				 
												
					[39] 
					 
					 Larrubial M A, Ramis G, Busca G.Applied Catalysis B-Environmental, 2000, 27,145.
					 					 
				 
												
					[40] 
					 
					 Yu Y Y, Yu M Y, Zhang Y, et al. Chinese Journal of Inorganic Chemistry, 2013, 29(8), 1657(in Chinese).
					 					 
				 
												
					 
					 于洋洋, 于美燕, 张玥, 等.无机化学学报, 2013, 29(8), 1657.
					 					 
				 
												
					[41] 
					 
					 Zhang J, Hu Y, Jiang X, et al.Journal of Hazardous Materials, 2014, 280,713.
					 					 
				 
												
					[42] 
					 
					 Tang H, Chang S F, Jiang L Y, et al.Ceramics International, 2016, 42(16),18443.
					 					 
				 
												
					[43] 
					 
					 Chen X, Wei J, Hou R, et al.Applied Catalysis B-Environmental, 2016, 188,342.
					 					 
				 
												
					[44] 
					 
					 Gao H T, Liu Y Y, Ding C H, et al.International Journal of Minerals Metallurgy and Materials, 2011, 18, 606.
					 					 
				 
												
					[45] 
					 
					 Xiao J, Xie Y, Cao H, et al.Catalysis Communications, 2015, 66, 10.
					 					 
				 
												
					[46] 
					 
					 Gu L, Wang J, Zou Z, et al.Journal of Hazardous Materials, 2014, 268, 216.
					 					 
				 
												
					[47] 
					 
					 Hao R R, Wang G H, Tang H, et al.Applied Catalysis B-Environmental, 2016, 187, 47.
					 					 
				 
												
					[48] 
					 
					 Ma T J, Wu J, Mi Y D, et al.Separation of Purification Technology, 2017, 183,54.
					 					 
				 
												
					[49] 
					 
					 Bard A J, Parsons R, Jordan J. Standard potentials in aqueous solution, CRC Press, New York, USA, 1985.
					 					 
				 
																																		
									             
									            									            												
											
														
															
																
																	
																																																																									
																				No Suggested Reading articles found!  
																																			
																 
															 
														
												 
											
												
											    	
											        	Viewed  
													
											        	 
											      	
												        
												        	Full text 
 
											        	
												        	
												        	
												          	
														 
													 
													
												         
													
												        
												        	Abstract 
 
												        
															
															
															
												         
													 
													
												         
													
												        Cited 
												        	
												         
													 
													
												         
													
													      
													    Shared     
												  	
													     
											  		
													      
													    Discussed