Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2005-2009    https://doi.org/10.11896/cldb.18120019
  无机非金属及其复合材料 |
CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇
肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣
海南大学南海海洋资源利用国家重点实验室,海南省特种玻璃实验室,海口 570228
Preparation of CuO/Er-Yb-TiO2 and Catalytic Synthesis of Methanol from CO2 Under Simulated Visible-light
XIAO Sa, TAN Heng, WU Shanni, ZENG Min, XIONG Chunrong
Special Glass Key Laboratory of Hainan Province,State Key Laboratory of Marine Resource Utilization in South China Sea,Hainan University,Haikou 570228,China
下载:  全 文 ( PDF ) ( 3895KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法制备了Er3+和Yb3+掺杂的TiO2纳米颗粒(Er-Yb-TiO2),并进一步通过浸渍法负载了CuO,得到CuO/Er-Yb-TiO2用于催化还原CO2合成甲醇。采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)仪、X射线光电子能谱(XPS)、紫外-可见光谱仪(UV-vis)、荧光分光光度计(PL)等对样品进行了表征。结果表明,在TiO2中掺入Er3+和Yb3+,在980 nm近红外光的激发下,可分别获得525 nm(2H11/24I15/2)、549 nm(4S3/24I15/2)和661 nm(4F9/24I15/2)的上转换可见光,并抑制了光生电子-空穴对的复合。负载CuO后,增强了TiO2对可见光的吸收,光生电子-空穴对更加稳定。在300 W氙灯模拟可见光下,分别采用纯TiO2、CuO/TiO2、Er-Yb-TiO2和CuO/Er-Yb-TiO2催化还原CO2合成甲醇,反应时间为2 h。结果显示,以纯TiO2为催化剂,甲醇的产率仅为23.9 μmol·g-1;Yb3+与Er3+的掺杂量分别为2.5%和1%(均为摩尔分数)的Er-Yb-TiO2获得的甲醇产率提高到116.7 μmol·g-1;CuO/TiO2和CuO/Er-Yb-TiO2由于CuO的负载提高了纳米颗粒对可见光的吸收,所得的甲醇产率分别提高到69.1 μmol·g-1及281.2 μmol·g-1。由此可见,CuO/Er-Yb-TiO2能高效催化还原CO2合成甲醇。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖洒
谈恒
吴珊妮
曾敏
熊春荣
关键词:  二氧化钛  稀土  上转换  可见光催化  二氧化碳  甲醇    
Abstract: Er3+ and Yb3+ co-doped TiO2 (Er-Yb-TiO2) nanoparticles were successfully synthesized by employing sol-gel method. Furthermore, CuO was loaded onto the Er-Yb-TiO2 by impregnation method, thus CuO/Er-Yb-TiO2 was obtained, utilizing in catalysis of CO2 reduction to prepare methanol. The characterization of the catalysts samples was carried out by means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), ultraviolet-visible spectrometer (UV-vis) and fluorescence spectrophotometer (PL). According to the analytic results, the doping of Er3+ and Yb3+ in TiO2 would bring about intense upconverted emissions in the visible region at 525 nm, 549 nm and 661 nm, which are ascribed to the 2H11/24I15/2,4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, under the excitation of near-infrared light at 980 nm. Additionally, incorporation of Er3+ and Yb3+ in TiO2 also inhabited the recombination of the excited electron-hole pairs. Loading CuO onto the Er-Yb-TiO2 or TiO2 might contribute to the absorption of the visible light and the stability of the photogenerated electron-hole pairs, which resulted in a better photocatalytic performance. Visible-light driven reduction of CO2 for methanol preparation was conducted under irradiation of 300 W Xe lamp for 2 h, taking pure TiO2, CuO/TiO2, Er-Yb-TiO2 and CuO/Er-Yb-TiO2 as catalysts. The results revealed that pure TiO2 showed a methanol yield of 23.9 μmol·g-1, the Er-Yb-TiO2 doped with 2.5mol% Yb3+ and 1mol% Er3+ exhibited a methanol yield of 116.7 μmol·g-1. The methanol yields of CuO/TiO2 and CuO/Er-Yb-TiO2 were raised to 69.1 μmol·g-1 and 281.2 μmol·g-1, due to the increased absorption of visible light by CuO loading. Consequently, CuO/Er-Yb-TiO2 can efficiently catalyze the reduction of CO2 for methanol preparation.
Key words:  titanium dioxide    rare earth    up-conversion    visible-light catalysis    carbon dioxide    methanol
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TQ034  
基金资助: 海南省重大科技计划项目(ZDKJ2017011);国家自然科学基金(51761010)
通讯作者:  bearcr_82@hotmail.com   
作者简介:  肖洒,2017年本科毕业于武汉工程大学。现为海南大学化学工程专业在读硕士研究生,主要从事光催化研究;熊春荣,海南大学教授。1998年硕士毕业于复旦大学,1998—2002年在中国石化上海石油化工研究院工作。2003—2006年至美国德克萨斯大学读博。2007年在加州大学Merced分校做博士后。2008年8月来海南大学工作至今,主要研究方向为功能膜材料、纳米材料、工业催化。
引用本文:    
肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
XIAO Sa, TAN Heng, WU Shanni, ZENG Min, XIONG Chunrong. Preparation of CuO/Er-Yb-TiO2 and Catalytic Synthesis of Methanol from CO2 Under Simulated Visible-light. Materials Reports, 2020, 34(2): 2005-2009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120019  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2005
1 Inoue T, Fujishima A, Konishi S, et al. Nature, 1979, 277(5698), 637.2 Nakata K, Fujishima A. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3), 170.3 Ke Y H, Zeng M, Jiang H, et al. Journal of Inorganic Materials, 2018, 33(8), 840(in Chinese).柯银环, 曾敏, 姜宏, 等. 无机材料学报, 2018, 33(8), 840.4 Ola O, Maroto-Valer M M. Applied Catalysis A: General, 2015, 502, 115.5 Li Xin, Liu H L, Luo D L, et al. Chemical Engineering Journal, 2012, 180, 152.6 Nguyen The-Vinh, Wu Jeffrey C S, Chiou Chwei-Huann. Catalysis Communications, 2008, 9(10), 2073.7 Thamaraiselvi K, Sivakumar T. Journal of Nanoscience and Nanotechnology, 2017, 17(1), 316.8 Qin S Y, Xin F, Liu Y D, et al. Journal of Colloid and Interface Science, 2011, 356(1), 260.9 Qin W P, Zhang D S, Zhao D, et al. Chemical Communications, 2010, 46, 2304.10 Auzel F. Chemical Reviews, 2004, 104(1), 140.11 Kwon H, Mota F M, Chung K, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(1), 1311.12 Méndez-Ramos J, Acosta-Mora P, Ruiz-Morales J C, et al. Journal of Alloys and Compounds, 2013, 575, 263.13 Mao X G, Wang J, Shen J. Acta Physica Sinica, 2014, 63(8), 087803(in Chinese).毛鑫光,王俊,沈杰. 物理学报, 2014, 63(8), 087803.14 Shang Q K, Yu H, Kong X G, et al. Journal of Luminescence, 2008, 128(7), 1213.15 Ji T H, Liu Y, Zhao H, et al. Journal of Solid State Chemistry, 2010, 183(3), 588.16 Zheng Y L, Wang W Z. Journal of Solid State Chemistry, 2014, 210(1), 208.17 Li H L, Lei Y G, Huang Y, et al. Journal of Natural Gas Chemistry, 2011, 20(2), 146.18 Zou Y D, Yang B B, Liu Y, et al. Advanced Functional Materials, 2018, 28(50), 1806214.19 Nasir M, Bagwasi S, Jiao Y C, et al. Chemical Engineering Journal, 2014, 236, 390.20 Yildirim S, Yurddaskal M, Dikici T, et al. Ceramics International, 2016, 42(9), 10581.21 Li L, Yang Y L, Zhou M, et al. Journal of Solid State Chemistry, 2013, 198, 460.22 Xu S P, Du A J, Liu J C, et al. International Journal of Hydrogen Energy, 2011, 36(11), 6564.23 Liu C H, Guo X M, Zhong C L, et al. Journal of Inorganic Chemistry, 2016, 32(8), 1407(in Chinese).刘超恒, 郭晓明, 钟成林, 等. 无机化学学报, 2016, 32(8), 1407.24 Reszczyńska J, Grzyb T, Sobczak J W, et al. Applied Catalysis B: Environmental, 2015, 163, 42.25 Lin H, Huang C P, Li W, et al. Applied Catalysis B: Environmental, 2006, 68, 2.26 Luo W Q, Cheng Y F, Li R F, et al. Small, 2011, 7(21), 3047.27 Obregón S, Kubacka A, Fernández-García M, et al. Journal of Catalysis, 2013, 299, 305.28 Ali K A, Abdullah A Z, Mohamed A R. Applied Catalysis A: General, 2017, 537, 115.29 Sun J Y, Xue B, Du H Y. Infrared Physics & Technology, 2013, 60, 11.30 Yao S P. Preparation and up-conversion luminescence of Er3+, and Er3+ and Yb3+doped TiO2 synthesized by sol-gel method. Master’s Thesis, Dalian University of Technology, China, 2006(in Chinese).姚淑萍. Sol-gel法Er3+及Er3+,Yb3+掺杂TiO2制备和上转换发光特性研究. 硕士学位论文, 大连理工大学, 2006.
[1] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[2] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[3] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[4] 吴志昂, 郑晓平, 龚莉雯, 王璠, 杨子程, 张利, 包锦标. 发泡工艺及超临界二氧化碳诱导结晶作用对聚碳酸酯发泡行为的影响[J]. 材料导报, 2020, 34(8): 8200-8204.
[5] 王瑞, 赵宣, 赵丽娟, 闫静, 田晓, 姚占全. 微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展[J]. 材料导报, 2020, 34(7): 7146-7153.
[6] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[7] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[8] 张鹏, 薛松柏, 费文潘, 王博, 韩翼龙, 裴夤崟, 钟素娟. 稀土元素Ce对Sr变质的Al-5Si铝合金焊丝含氢量和焊缝气孔率的影响[J]. 材料导报, 2020, 34(2): 2100-2104.
[9] 王建, 龚志军, 李保卫, 徐国栋, 武文斐. 稀土尾矿矿物学分析及微波焙烧对其催化脱硝性能的影响[J]. 材料导报, 2020, 34(16): 16072-16076.
[10] 栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
[11] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[12] 龚莉雯, 郑晓平, 吴志昂, 王璠, 杨子程, 张利, 包锦标. 微孔发泡聚碳酸酯-聚烯烃弹性体共混物[J]. 材料导报, 2020, 34(10): 10197-10200.
[13] 康宁, 陈灼, 徐双林, 单优, 赵长春. Eu3+,Ce4+掺杂NaAlSiO4的制备及发光性能[J]. 材料导报, 2019, 33(Z2): 10-12.
[14] 程亮, 赵子龙. 用Ti板制备高比表面积TiO2纳米管的响应面实验设计[J]. 材料导报, 2019, 33(Z2): 365-368.
[15] 王景昌, 赵宇, 苗宏雨, 赵启成, 詹世平. 超临界二氧化碳辅助制备β-环糊精-药物包合物的研究进展[J]. 材料导报, 2019, 33(Z2): 542-546.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed