Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16072-16076    https://doi.org/10.11896/cldb.19080103
  无机非金属及其复合材料 |
稀土尾矿矿物学分析及微波焙烧对其催化脱硝性能的影响
王建1, 龚志军1,2, 李保卫2, 徐国栋1, 武文斐1,2
1 内蒙古科技大学能源与环境学院,包头 014010;
2 内蒙古自治区白云鄂博矿多金属资源综合利用国家重点实验室,包头 014010
Mineralogy Analysis of Rare Earth Tailings and Effect of Microwave Calcination on Their Catalytic Denitrification Performance
WANG Jian1, GONG Zhijun1,2, LI Baowei2, XU Guodong1, WU Wenfei1,2
1 School of Environment & Energy, Inner Mongolia University of Science & Technology, Baotou 014010, China;
2 Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Baotou 014010, China
下载:  全 文 ( PDF ) ( 3828KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用X射线荧光光谱分析仪(XRF)、X射线衍射仪(XRD)、扫描电镜(SEM)、矿物特征自动定量分析系统(AMICS)、热重-质谱联用(TG-MS)对稀土尾矿的化学组成、矿物组成、矿物嵌布特征进行研究。结果表明:稀土尾矿矿物组成复杂,嵌布粒度很细。稀土尾矿中铁元素主要赋存于赤铁矿、磁铁矿和黄铁矿中,稀土元素主要赋存于氟碳铈矿和独居石中。选取300 ℃、350 ℃、400 ℃、450 ℃和500 ℃五个温度对稀土尾矿进行微波焙烧处理。实验结果显示,经过400 ℃焙烧后的稀土尾矿催化脱硝率最高,当反应温度为900 ℃时,脱硝率可达96.1%。对经过400 ℃微波焙烧的稀土尾矿进行下列表征分析:XRD显示经过400 ℃微波焙烧后矿物有两个Fe2O3特征峰消失;SEM显示矿物表面出现了一些裂缝和孔隙,且矿物表面有不同程度的坍塌;程序升温还原(H2-TPR)显示经过400 ℃焙烧后矿物还原温度范围变宽,且还原峰出峰温度提前。本研究结果对白云鄂博稀土尾矿的高效综合利用具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王建
龚志军
李保卫
徐国栋
武文斐
关键词:  稀土尾矿  矿物分析  微波  催化    
Abstract: The characteristics of chemical composition, mineral composition and mineral embedding of rare earth tailings were studied by X-ray fluorescence spectrometer (XRF), X-ray diffractometer (XRD), scanning electron microscopy (SEM), advanced mineral identification and cha-racterization system (AMICS), thermogravimetric analyzer (TG) and mass spectrometer (MS). The results showed that the rare earth tailings have a complex mineral composition and a fine grain size. Iron mainly occured in hematite, magnetite and pyrite, and rare earth elements mainly occured in bastnasite and monazite. Rare earth tailings were calcined by five microwave calcination temperatures of 300 ℃, 350 ℃, 400 ℃, 450 ℃ and 500 ℃. The experimental results showed that the rare earth tailings at 400 ℃ calcination had the highest catalytic denitrification rate. When the reaction temperature was 900 ℃, the denitrification rate can reach to 96.1%. Rare earth tailings of 400 ℃ calcination were characterized as follows: XRD showed that two Fe2O3 characteristic peaks disappeared at 400 ℃ calcination; SEM showed some cracks and pores on the mineral surface, and the mineral surface had different degrees of collapse; temperature programmed reduction (H2-TPR) showed that the range of mineral reduction temperature was broadened at 400 ℃ calcination, and the temperature of the reduction peak advanced. The results may provide the evidence for the efficient and comprehensive utilization of the rare earth tailing from Bayan Obo.
Key words:  rare earth tailings    mineralogy analysis    microwave    catalytic
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TD983  
基金资助: 国家自然科学基金(51866013);内蒙古自治区自然科学基金(2017MS(LH)0529)
通讯作者:  wwf@imust.cn   
作者简介:  王建,2017 年毕业于内蒙古科技大学,获得工学学士学位。现为内蒙古科技大学硕士研究生。目前主要从事矿物催化材料的研究。
武文斐,就职于内蒙古科技大学,硕士研究生导师,教授,主要研究方向为热能工程试验与数值模拟研究、高效洁净燃烧技术。
引用本文:    
王建, 龚志军, 李保卫, 徐国栋, 武文斐. 稀土尾矿矿物学分析及微波焙烧对其催化脱硝性能的影响[J]. 材料导报, 2020, 34(16): 16072-16076.
WANG Jian, GONG Zhijun, LI Baowei, XU Guodong, WU Wenfei. Mineralogy Analysis of Rare Earth Tailings and Effect of Microwave Calcination on Their Catalytic Denitrification Performance. Materials Reports, 2020, 34(16): 16072-16076.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080103  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16072
1 Drew L, Qing R M, Wei J S. Lithos, 1990, 26(1-2), 43.
2 Cheng J Z, Che L P. Chinese Rare Earths, 2010, 31(2), 65(in Chinese).
程建忠, 车丽萍. 稀土, 2010, 31(2), 65.
3 Yasuo Kanazawa, Masaharu Kamitani. Journal of Alloys and Compounds, 2006, 408-412, 1339.
4 Zheng Q, Bian X, Wu W Y. Journal of Northeastern University (Natural Science), 2017, 38(8), 1107(in Chinese).
郑强, 边雪, 吴文远. 东北大学学报(自然科学版), 2017, 38(8), 1107.
5 Guo W, Fu R Y, Zhao R X, et al. Environmental Science, 2013, 34(5), 1896(in Chinese).
郭伟, 付瑞英, 赵仁鑫, 等. 环境科学, 2013, 34(5), 1896.
6 Zhang Y T, Shen J, Zhao Z. Chinese Journal of Rare Metals, 2007, 31(S1), 105(in Chinese).
张钰婷, 沈俊, 张昭. 稀有金属, 2007, 31(S1), 105.
7 Tronconi E, Nova I, Ciardelli C et al. Journal of Catalysis, 2007, 245(1), 5.
8 Iwasaki M, Yamazaki K, Banno K, et al. Journal of Catalysis, 2008, 260(2), 208.
9 Wu X D, Si Z C, Li G, et al. Journal of Rare Earths, 2011, 29(1), 66.
10 Frey A M, Mert S, Due-Hansen J, et al. Catalysis Letters, 2009, 130(1-2), 5.
11 Wang L Y. Investigation on the catalytic removal of NO by CO over activated semi-coke based catalyst. Ph.D. Thesis, Shangdong University, China, 2018(in Chinese).
王鲁元. 基于半焦载体催化剂的一氧化碳催化脱硝性能研究. 博士学位论文, 山东大学, 2018.
12 Su Y X, Su A L, Cheng H. Journal of China Coal Society, 2013, 38(S1), 207(in Chinese).
苏亚欣, 苏阿龙, 成豪. 煤炭学报, 2013, 38(S1), 207.
13 Wang L, Cheng X, Wang Z, et al. The Canadian Journal of Chemical Engineering, 2016, 35, 449.
14 Mantri D, Aghalayam P. Catalysis Today, 2007, 119(1-4), 89.
15 Lin X F, Zhang X E. World Latest Medicine Information, 2017, 17(52) 87(in Chinese).
林晓芳, 张晓娥. 世界最新医学信息文摘, 2017, 17(52), 87.
16 Dai X X, Jiang W Y, Wang W L, et al. Chinese Journal of Catalysis, 2018, 39, 730.
17 Lu P, Hao J T, Yu W, et al. Fuel, 2016, 170(15), 64.
18 Llieva L, Pantaleo G, Velinov N, et al. Applied Catalysis B: Environmental, 2015, 174-175, 178.
19 Zhang S R, Tu G F, Ren C Z, et al. Chinese Journal of Rare Metals, 1998, 22(3), 187(in Chinese).
张世荣, 涂赣峰, 任存治, 等. 稀有金属, 1998, 22(3), 186.
20 Hu H, Wang S X, Zhang X L, et al. Journal of Rare Earth, 2006, 24(6), 697.
21 Xiong Z B, Lu C M, Han G H, et al. Journal of China Coal Society, 2013, 38(S1), 202(in Chinese).
熊志波, 路春美, 韩奎华, 等. 煤炭学报, 2013, 38(S1), 202.
22 Wang K L, Wang X H, Liu Z S. Contemporary Chemical Industry, 2015, 44(9), 2059(in Chinese).
王宽岭, 王学海, 刘忠生. 当代化工, 2015, 44(9), 2059.
23 Liu C P,Xu Y S,Hua Y X.China Journal of Metallurgy Science and Technology,1990, 6(2), 123.
24 Ma B, Yang W, Pei Y, et al. Hydrometallurgy, 2017, 169, 415.
[1] 居殿春, 武兆勇, 张荣良, 王海风, 王锋, 严定鎏. 微波加热Mg-TiO2混合物的研究[J]. 材料导报, 2020, 34(Z1): 140-143.
[2] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[3] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[4] 谢旭豪, 许胜超, 徐志勇, 赵文波. 硫醇类化合物合成工艺与方法[J]. 材料导报, 2020, 34(7): 7168-7176.
[5] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[6] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[7] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[8] 汪洪波, 谢志雄, 董仕节, 黄海军, 高海燕. AlTi5B催化富铝合金水解产氢反应——一种高效经济制备氢气的方法[J]. 材料导报, 2020, 34(4): 4062-4067.
[9] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[10] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[11] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[12] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[13] 邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
[14] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[15] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed