Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4062-4067    https://doi.org/10.11896/cldb.19020052
  金属与金属基复合材料 |
AlTi5B催化富铝合金水解产氢反应——一种高效经济制备氢气的方法
汪洪波1,2, 谢志雄1,2, 董仕节1,2, 黄海军3, 高海燕3
1 湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068;
2 湖北工业大学材料与化学工程学院,武汉 430068;
3 上海交通大学金属基复合材料国家重点实验室,上海 200240
AlTi5B Catalyzed Hydrogenation Reaction of Al-rich Alloys: an Efficient and Economical Approach for Hydrogen Production
WANG Hongbo1,2, XIE Zhixiong1,2, DONG Shijie1,2, HUANG Haijun3, GAO Haiyan3
1 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China;
2 School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
3 The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 5485KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验研究了添加AlTi5B对Al-5Ga-5Sn(质量分数,下同)铝合金与水反应制氢性能的影响。实验结果表明,当AlTi5B质量分数为0.5%时,铝合金的产氢量、产氢速率以及转化率最好。1 g Al-5Ga-5Sn-0.5%AlTi5B铝合金在水温60 ℃下反应20 min时,产氢量为1 170 mL,转化率为96%。当AlTi5B质量分数小于或大于0.5%时,铝合金的产氢量和产氢速率均下降。扫描电镜(SEM)结果显示,加入0.5% AlTi5B后Al-5Ga-5Sn铝合金的晶粒显著细化。铝晶粒由原来的平均尺寸为100 μm的柱状晶变为平均尺寸为30 μm的等轴晶。由X射线光电子能谱(XPS)结果可见,Al-5Ga-5Sn-0.5%AlTi5B铝合金比Al-5Ga-5Sn铝合金表面氧化更严重,表明AlTi5B增强了铝合金的化学活性。由电化学测试结果可知,加入0.5% AlTi5B后铝合金的开路电压由原来的-1.27 V降低为-1.39 V。晶粒显著细化、铝合金活性增强和开路电压降低是促进铝合金水解并提高产氢性能的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪洪波
谢志雄
董仕节
黄海军
高海燕
关键词:  AlTi5B  铝合金  催化  水解产氢    
Abstract: This study investigated the impact of AlTi5B introduction on the hydrogen production performance of Al-5Ga-5Sn (wt%) alloy in reaction with water. The experimental results demonstrated that Al-5Ga-5Sn alloy with 0.5wt% AlTi5B acquired the best hydrogen production amount, hydrogen yield and conversion rate in hydrogenation reaction. The reaction of 1 g Al-5Ga-5Sn-0.5%AlTi5B alloy in water under 60 ℃ for 20 min resulted in a hydrogen production amount of 1 170 mL and a conversion rate of 96%. With a AlTi5B mass fraction of below or above 0.5%, there would be a drop in hydrogen production amount and hydrogen yield of the Al-5Ga-5Sn alloy participated hydrogenation reaction. The observation by scanning electron microscopy (SEM) revealed that the grains of Al-5Ga-5Sn alloy were remarkably refined after the addition of 0.5% AlTi5B. A alteration in Al crystal grains from columnar crystals with an average size of 100 μm to equiaxed crystals with an average size of 30 μm was observed. The analytic results of X-ray photoelectron spectroscopy (XPS) indicated that Al-5Ga-5Sn alloy with 0.5% AlTi5B presented more se-rious surface oxidation than the one without AlTi5B, demonstrating the enhanced chemical activity of Al-5Ga-5Sn alloy by AlTi5B. According to the electrochemical test results, the open circuit voltage of Al-5Ga-5Sn alloy was reduced from the original -1.27 V to -1.39 V after adding 0.5% AlTi5B. Consequently, main factors that promote the hydrolysis of Al-5Ga-5Sn alloy and improve hydrogen production performance lies in significant refined grains, increased activity of Al-5Ga-5Sn alloy and reduced open circuit voltage.
Key words:  AlTi5B    Al alloy    catalyze    hydrogen production by hydrolysis
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TK91  
基金资助: 国家自然科学基金(51771071)
通讯作者:  xzx@hbut.edu.cn   
作者简介:  汪洪波,湖北工业大学硕士研究生,主要从事铝基复合材料产氢性能的研究;谢志雄,工学博士,硕士研究生导师,湖北工业大学材料成型及控制工程系副主任,2012年6月于上海交通大学材料加工工程专业获工学博士学位,迄今发表论文20余篇,其中SCI/EI收录论文15余篇,主持和参与湖北省自然科学基金项目、国家自然科学基金项目,获湖北省科技进步奖三等奖和湖北省自然科学三等奖各1项,主要从事高强高导铜合金的制备、组织性能和强化机理,产氢铝合金的制备,产氢机理方面研究。
引用本文:    
汪洪波, 谢志雄, 董仕节, 黄海军, 高海燕. AlTi5B催化富铝合金水解产氢反应——一种高效经济制备氢气的方法[J]. 材料导报, 2020, 34(4): 4062-4067.
WANG Hongbo, XIE Zhixiong, DONG Shijie, HUANG Haijun, GAO Haiyan. AlTi5B Catalyzed Hydrogenation Reaction of Al-rich Alloys: an Efficient and Economical Approach for Hydrogen Production. Materials Reports, 2020, 34(4): 4062-4067.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020052  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4062
1 Du Preez S P, Bessarabov D G. International Journal of Hydrogen Energy, 2017, 42(26),16589.
2 Dupiano P, Stamatis D, Dreizin E L. International Journal of Hydrogen Energy, 2011,36(8),4781.
3 Liu Y, Liu X, Chen X, et al. International Journal of Hydrogen Energy, 2017,42(16),10943.
4 Hu Xiaofeng, Yu Kun, Peng Daluo, et al. Materials Review A: Review Papers, 2018,32(11),3720(in Chinese).
胡晓峰, 余昆, 彭大硌, 等. 材料导报:综述篇, 2018,32(11),3720.
5 Mallouk T E. Nature Chemistry, 2013,5(5),362.
6 Choi B, Panthi D, Nakoji M, et al. Chemical Engineering Science, 2017,157,200.
7 Guo L, Li X M, Zeng G M, et al. Energy, 2010,35(9),3557.
8 Tanksale A, Beltramini J N, Lu G M. Renewable and Sustainable Energy Reviews, 2010,14(1),166.
9 Ersoz A, Olgun H, Ozdogan S. Journal of Power Sources, 2006,154(1),67.
10 Muradov N, Vezirolu T. International Journal of Hydrogen Energy, 2005,30(3),225.
11 Sharma P, Kolhe M L. International Journal of Hydrogen Energy, 2017,42(36),22704.
12 Kandi D, Martha S, Parida K M. International Journal of Hydrogen Energy, 2017,42(15),9467.
13 Eom K, Kim M, Oh S, et al. International Journal of Hydrogen Energy, 2011,36(18),11825.
14 Eom K, Cho E, Kwon H. International Journal of Hydrogen Energy, 2011,36(19),12338.
15 Razavi-Tousi S S, Szpunar J A. International Journal of Hydrogen Energy, 2013,38(2),795.
16 Gai W Z, Deng Z Y. Journal of Power Sources, 2014,245,721.
17 Soler L, Candela A M, Macanás J, et al. International Journal of Hydrogen Energy, 2010,35(3),1038.
18 Dai H B, Ma G L, Xia H J, et al. Energy & Environmental Science, 2011,4(6),2206.
19 Xu F, Sun L, Lan X, et al. International Journal of Hydrogen Energy, 2014,39(11),5514.
20 Chen X, Zhao Z, Hao M, et al. Journal of Power Sources, 2013,222,188.
21 Ziebarth J T, Woodall J M, Kramer R A, et al. International Journal of Hydrogen Energy, 2011,36(9),5271.
22 Yang W, Zhang T, Zhou J, et al. Energy, 2015 ,88,537.
23 Wang H, Chang Y, Dong S, et al. International Journal of Hydrogen Energy, 2013,38(3),1236.
24 Mahmoodi K, Alinejad B. International Journal of Hydrogen Energy, 2010,35(11),5227.
25 Fan M Q, Sun L X, Xu F. Energy, 2010,35(7),2922.
26 Rosenband V, Gany A. International Journal of Hydrogen Energy, 2010,35(20),10898.
27 Soler L, Macanas J, Munoz M, et al. International Journal of Hydrogen Energy, 2007,32(18),4702.
28 Soler L, Candela A M, Macanás J, et al. International Journal of Hydrogen Energy, 2009,34(20),8511.
29 Qiao D, Lu Y, Tang Z, et al. International Journal of Hydrogen Energy, 2019,44(7),3527.
30 Xie Z, Dong S, Luo P, et al. Materials Transactions, 2017,58(5),724.
31 Zhou Xiangyang, Yang Tao, Wang Hui. Materials Review A: Review Papers, 2016,30(11),1(in Chinese).
周向阳, 杨焘, 王辉. 材料导报:综述篇, 2016,30(11),1.
32 Zhu Y B, Shen Z C, Zhang C F, et al. Handbook of electrochemical data, Hunan Science and Technique Press, China, 1985(in Chinese).
朱元宝,沈子琛,张传福,等. 电化学数据手册, 湖南科学技术出版社,1985.
33 Wang Y Q, Gai W Z, Zhang X Y, et al. RSC Advances, 2017,7(4),2103.
34 Luo Hui. The preparation and application of Al-based micro/nano composite materials for hydrogen generation in pure water. Master’s Thesis, Shanghai Normal University, China, 2012(in Chinese).
罗辉. 铝基微/纳米复合水解制氢材料的制备及其性能的研究. 硕士学位论文,上海师范大学,2012.
35 Xiao F, Guo Y, Li J, et al. Energy, 2018,157,608.
36 Xiao F, Guo Y, Yang R, et al. International Journal of Hydrogen Energy, 2018,44(3),1366.
37 Du B D, Wang W, Chen W, et al. International Journal of Hydrogen Energy, 2017,42(34),21586.
38 Venkateswarlu K, Chakraborty M, Murty B S. Materials Science and Engineering: A, 2004,364(1-2),75.
39 Han Y, Li K, Wang J, et al. Materials Science and Engineering: A, 2005,405(1-2),306.
40 Birol Y. Journal of Alloys and Compounds, 2009,486(1-2),219.
41 Fan Z, Wang Y, Zhang Y, et al. Acta Materialia, 2015,84,292.
42 Sigworth G K. Scripta Materialia, 1996,34(6),919.
43 Schumacher P, Greer A L, Worth J, et al. Materials Science and Technology, 1998,14(5),394.
44 Schumacher P, Greer A. Materials Science and Engineering: A, 1994,178(1-2),309.
45 Parsons R. Handbook of electrochemical constants, Academic Press, USA, 1959.
46 Fan Meiqiang, Liu Yingya, Yang Lini, et al. Chemical Journal of Chinese Universities, 2008(2),356(in Chinese).
范美强, 刘颖雅, 杨黎妮, 等. 高等学校化学学报,2008(2),356.
47 Li Zhenya, Yi Ling, Liu Zhihui, et al. Journal of Electrochemical, 2011,7(3),316(in Chinese).
李振亚, 易玲, 刘稚蕙, 等. 电化学, 2001,7(3),316.
48 Reboul M C, Gimenez P, Rameau J J. Corrosion, 1984,40(7),366.
49 Shettlemore M G, Bundy K J. Dental Materials, 2002,18(6),445.
50 He T T, Wang W, Chen D M, et al. International Journal of Hydrogen Energy, 2014,39(2),684.
[1] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[2] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[3] 张瑞阳, 李成金, 张艾丽, 周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[4] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[5] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[6] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[7] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[8] 邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
[9] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[10] 杜洪方,王珂,何松,杨凯,艾伟,黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[11] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[12] 刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33(Z2): 104-112.
[13] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[14] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[15] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed