Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4013-4019    https://doi.org/10.11896/cldb.18100226
  无机非金属及其复合材料 |
Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究
罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明
西南民族大学电气信息工程学院,信息材料四川省高校重点实验室,成都 610041
Synthesis of Ag Deposited ZnO∶Cu Nanoparticles and Study of Their High Photocatalytic Performance
LUO Kaiyi, YUAN Huan, LIU Yutong, ZHANG Jiaxi, ZHANG Qiuping, WANG Xiaoyi, HU Wenyu, LI Jing, XU Ming
College of Electrical & Information Engineering & Key Laboratory of Information Materials of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
下载:  全 文 ( PDF ) ( 6078KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高分子网络凝胶法制备了Ag沉积的ZnO∶Cu纳米颗粒。XRD和SEM结果表明,Cu掺入后ZnO纳米颗粒的晶粒尺寸有所减小,但颗粒分散性得到改善。XPS谱的分析表明,Cu在样品中以Cu2+和Cu+的形式共存。结合PL光谱分析,认为Cu2+和Cu+间的能级跃迁是引起蓝光发射的重要因素。UV-vis光谱显示掺铜明显提高了Ag-ZnO复合体系对可见光的吸收。分别在模拟太阳光和紫外光下降解亚甲基蓝(MB),测试样品的光催化性能。分析认为,Cu离子与Ag/ZnO异质结之间的协同作用能促进光催化反应的进行,与掺5%(摩尔分数,下同)Cu的Ag-ZnO纳米颗粒相比,微量掺杂0.2%Cu的Ag-ZnO样品在形貌、光学性能等方面更具优势,因此表现出更优异的光催化活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗凯怡
袁欢
刘禹彤
张嘉羲
张秋平
王笑乙
胡文宇
李靖
徐明
关键词:  ZnO∶Cu纳米颗粒  Ag/ZnO异质结  高分子网络凝胶  光催化    
Abstract: Ag deposited ZnO∶Cu nanoparticles were prepared by polymer network gel method. XRD and SEM results revealed that the grain size of ZnO nanoparticles decreased but the dispersion of the particles was improved after Cu doping. XPS showed that Cu ions existed in the form of Cu2+ and Cu+ in samples. In conjunction with PL spectrum, the energy level transition between Cu+ and Cu2+ is considered to be an important factor in blue light emission. UV-vis spectrum evidenced that Cu doping significantly enhanced the absorption of visible light by Ag-ZnO composite system. The photocatalytic performance of the samples was tested by degrading methylene blue (MB) under the simulated sunlight and ultraviolet light respectively. Analysis suggests that the synergistic effect between Cu ions and Ag/ZnO heterojunction can promote the photocatalytic rea-ction. Compared to Ag-ZnO nanoparticles with 5mol% Cu, Ag-ZnO sample with trace doping of 0.2mol% Cu exhibited better photocatalytic activity due to its advantages in morphology, optical properties and other aspects.
Key words:  Cu nanoparticles    Ag/ZnO heterojunction    polymer network gel method    photocatalysis
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  O614.24+  
基金资助: 四川省学术带头人培养基金(26727502);四川省科技厅应用基础研究重点项目(2017JY0349);西南民族大学研究生创新型科研 项目(CX2019SZ09)
通讯作者:  hsuming_2001@aliyun.com   
作者简介:  罗凯怡,西南民族大学电子功能材料学科硕士研究生,主要从事氧化物功能材料的研究;徐明,西南民族大学教授。2000年7月毕业于中国科学院物理研究所,获凝聚态物理专业博士学位,先后在奥地利、比利时、 新加坡从事博士后研究。已在物理或材料的国际主流刊物上发表SCI学术论文100多篇,授权7项中国专利。其中以第一或通讯作者身份完成的部分工作已被写入3部国际权威的专业工具书和13部国际学术专著。
引用本文:    
罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
LUO Kaiyi, YUAN Huan, LIU Yutong, ZHANG Jiaxi, ZHANG Qiuping, WANG Xiaoyi, HU Wenyu, LI Jing, XU Ming. Synthesis of Ag Deposited ZnO∶Cu Nanoparticles and Study of Their High Photocatalytic Performance. Materials Reports, 2020, 34(4): 4013-4019.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100226  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4013
1 Wei Z S, Janczarek M, Endo M, et al. Applied Catalysis B: Environmental, 2018, 237(5),574.
2 Zhou C Y, Lai C, Zhang C, et al. Applied Catalysis B: Environmental, 2018, 238(15),6.
3 Rooydell R, Brahma S, Wang R C, et al. Journal of Alloys and compounds, 2017, 691(15), 936.
4 Mclaren A, Valdessolis T, Li G, et al. Journal of the American Chemical Society, 2009, 131(35), 12540.
5 Chakrabarti S, Dutta B K. Journal of Hazardous Materials, 2004, 112(3), 269.
6 Wu S D, Song Y L, Li C, et al. New Chemical Materials, 2011, 39(5), 70(in Chinese).
吴诗德, 宋彦良, 李超, 等. 化工新型材料, 2011, 39(5), 70.
7 Chen X, Li Y, Pan X, et al. Nature Communications, 2016, 7, 12273.
8 Zhao F, Shi L Q, Cui J B, et al. Acta Physico-Chimica Sinica, 2016, 32(8), 2069(in Chinese).
赵菲, 时林其, 崔佳宝, 等. 物理化学学报, 2016, 32(8),2069.
9 Du Y Y. A research on the microstructure and photocatalytic performance of Fe-doped ZnO. Master’s Thesis, Northeastern University, China, 2013(in Chinese).
杜艳艳. Fe掺杂ZnO的微结构及其光催化性能的研究. 硕士学位论文,东北大学, 2013.
10 Yan X, Zou C, Gao X, et al. Journal of Materials Chemistry, 2012, 22(12), 5629.
11 Chen Y, Yu F, Liu Y T, et al. Materials Review B:Research Papers,, 2017, 31(12), 120(in Chinese).
陈雨, 余飞, 刘禹彤, 等. 材料导报: 研究篇, 2017, 31(12), 120.
12 Nian H, Hahn S, Koo K, et al. Materials Letters, 2010, 64, 157.
13 Zheng Y H, Zheng L, Zhan Y Y, et al. Journal of Macromolecular Scie-nce, 2007, 35(6), 905.
14 Han Z, Ren L, Cui Z. Applied Catalysis B: Environmental, 2012, 126(38), 298.
15 Georgekutty R, Serry M K, Pillai S C. Journal of Physical Chemistry C, 2008, 112(35), 13563.
16 Kuriakose S, Satpati B, Mohapatrar S, et al. Physical Chemistry Chemical Physics, 2015, 17(38), 25172.
17 Kumaresan S, Vallalperuman K, Sathishkumar S, et al. Journal of Materials Science: Materials In Electronics, 2017, 28(13), 1.
18 Meshram S P, Adhyapak P V, Amalnerkar D P, et al. Ceramics International, 2016, 42(6), 7482.
19 Mittal M, Sharma M, Pandey O P. Solar Energy, 2014, 110(110), 386.
20 Kadam A N, Kim T G, Shin D S, et al. Journal of Alloys and Compounds, 2017, 710(5), 102.
21 Xu M, Yuan H, You B, et al. Journal of Applied Phisics, 2014, 115, 093503.
22 Malwal D, Gopinath D P. Chemistry Select, 2017, 2(17), 4866.
23 Jing L Q, Yuan F L, Hou H G, et al. Science in China, 2004, 34(4), 310(in Chinese).
井立强, 袁福龙, 侯海鸽, 等. 中国科学, 2004, 34(4), 310.
24 Chen C, Zheng Y, Zhan Y, et al. Dalton Transactions, 2011, 40(37), 9566.
25 Kamarulzaman N, Kasim M F, Chayed N F. Results in Physics, 2016, 6, 217.
26 Yuan H, Xu M, Du X S. Materials Letters, 2015, 154(1), 94.
27 Labhane P K, Huse V R, Patle L B, et al. Journal of Materials Science and Chemical Engineering, 2015, 3(7), 39.
28 Peng X P, Lan W, Tan Y S, et al. Acta Physica Sinica, 2004, 53(8), 2705(in Chinese).
朋兴平, 兰伟, 谭永胜, 等. 物理学报, 2004, 53(8), 2705.
29 Wang R C, Su W S. Journal of Alloys and Compounds, 2016, 654(5), 1.
30 Kouklin N. Advanced Materials, 2010, 20(11), 2190.
31 Wan X, Liang X, Zhang C, et al. Chemical Engineering Journal, 2015, 272(15), 58.
32 Dingle R. Physical Review Letters, 1969, 23(11), 579.
33 Qu S W, Tang X, Lu H F, et al. Chinese Journal of Luminescence, 2010, 31(2), 204(in Chinese).
曲盛薇, 唐鑫, 吕海峰, 等. 发光学报, 2010, 31(2), 204.
[1] 张瑞阳, 李成金, 张艾丽, 周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[2] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[3] 肖洒, 谈恒, 吴珊妮, 曾敏, 熊春荣. CuO/Er-Yb-TiO2的制备及在模拟可见光下催化CO2合成甲醇[J]. 材料导报, 2020, 34(2): 2005-2009.
[4] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[5] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[6] 刘畅, 张志宾, 王有群, 钟玮鸿, 刘云海. 基于g-C3N4异质结复合材料光催化降解污染物的研究进展[J]. 材料导报, 2019, 33(Z2): 104-112.
[7] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[8] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[9] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[10] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[11] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[12] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[13] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[14] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[15] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed