Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7146-7153    https://doi.org/10.11896/cldb.19030160
  金属与金属基复合材料 |
微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展
王瑞1, 赵宣1, 赵丽娟1, 闫静1, 田晓1, 姚占全2
1 内蒙古师范大学物理与电子信息学院,功能材料物理与化学自治区重点实验室,呼和浩特 010022;
2 内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018
Research Progress on the Enhanced Magnetostrictive Properties of Fe-Ga Alloys Induced by Trace Rare Earth Doping
WANG Rui1, ZHAO Xuan1, ZHAO Lijuan1, YAN Jing1, TIAN Xiao1, YAO Zhanquan2
1 Key Laboratory for Physics and Chemistry of Functional Materials, School of Physics and Electronic Information, Inner Mongolia Normal University, ;
Hohhot 010022, China;
2 School of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
下载:  全 文 ( PDF ) ( 2538KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁致伸缩材料是一类新型智能材料,在机器人、传感器和位移控制器等领域有重要的应用价值。与传统磁致伸缩材料和已商业化巨磁致伸缩材料相比,新型Fe-Ga磁致伸缩材料具有更易实用化的优良特性和应用前景,例如低磁场下应变高、力学性能好、对温度的依赖性低、价格低廉等,因而Fe-Ga合金成为凝聚态物理和材料科学领域的研究热点。早期关于Fe-Ga合金的研究主要集中在单晶Fe-Ga合金,但其制备工艺复杂、成本高,难以广泛应用。为拓宽Fe-Ga合金的应用范围,人们开始关注多晶Fe-Ga合金。然而,采用常规熔炼法制备的多晶Fe-Ga合金磁致伸缩系数很低,限制了其实际应用。因此,提高多晶Fe-Ga合金的磁致伸缩性能成为该类合金能广泛应用的关键。
   合金结构决定合金性能,合金结构又与合金成分和制备工艺密切相关。为提高多晶Fe-Ga合金磁致伸缩系数,研究者做了大量工作。近年来,具有特殊4f电子层结构的稀土元素因具有优异的磁学性质而引起人们的广泛关注。人们将微量稀土元素Tb、Dy、Ce、Y、Sm、Pr等掺杂到Fe-Ga合金中,发现Fe-Ga合金的磁致伸缩性能得到明显的改善。然而到目前为止,有关稀土掺杂Fe-Ga合金的磁致伸缩机制仍不一致。一些研究者认为磁致伸缩性能的改善是由于稀土掺杂导致Fe-Ga合金形成富稀土相,也有研究者认为主要是由于稀土掺杂使合金沿〈100〉择优取向。近年来一些研究者认为,大磁致伸缩主要源于稀土原子进入Fe-Ga合金的A2基体中引起的大四方畸变。但是稀土掺杂如何使Fe-Ga合金中A2基体产生大四方畸变以及掺杂稀土与A2基体中四方纳米异质结构modified DO3相是如何作用的,这些问题仍不清楚。
   本文首先分析了人们选择稀土元素掺杂Fe-Ga合金的原因;然后分析了稀土元素掺杂对Fe-Ga合金性能的影响;最后详细综述了稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的理论机制,同时展望了该类合金未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王瑞
赵宣
赵丽娟
闫静
田晓
姚占全
关键词:  Fe-Ga合金  磁致伸缩性能  稀土元素  元素掺杂    
Abstract: Magnetostrictive material is a new kind of smart material, which has important application value in robot, sensor and displacement controller. Compared with traditional magnetostrictive material and commercialized giant magnetostrictive materials, the new Fe-Ga magnetostrictive material has excellent characteristics of more practical and application prospect, such as high strain at low magnetic field, good mechanical pro-perty, low temperature dependence, low cost, and so on. So Fe-Ga alloy become a hot research topic in the field of condensed matter physics and materials science. The early researches related to Fe-Ga alloy mainly focused on the single-crystal Fe-Ga alloy. But It’s preparation process is difficult and the cost is high, so it is difficult to be widely used. In order to broaden the application range of Fe-Ga alloy, people begin to pay attention to polycrystalline Fe-Ga alloy. However, the low magnetostrictive coefficient of polycrystalline Fe-Ga alloy prepared by conventional mel-ting method limits its practical application. Therefore, improving the magnetostrictive property of polycrystalline Fe-Ga alloy is the key to its wide application.
The structure of the alloy determines its properties, and the structure of the alloy is closely related to the composition and preparation process of the alloy. In order to improve the magnetostrictive coefficient of polycrystalline Fe-Ga alloy, researchers have done a lot of research work. In recent years, rare earth elements with special 4f electron structure have attracted more and more attention in the field of magnetostriction due to their excellent magnetic properties. Light trace rare earth element Tb, Dy, Ce, Y, Sm and Pr were doped into Fe-Ga alloy, and it was found that the magnetostrictive property of Fe-Ga alloy was significantly improved. However, the conclusion about the magnetostriction mechanism of rare earth doped Fe-Ga alloy is still inconsistent. Some researchers believe that the improvement of magnetostrictive properties is due to the formation of rare earth rich phase in Fe-Ga alloy due to the doping of rare earth, while others believe that the main reason is that the alloy has a preferential orientation along 〈100〉 due to the doping of rare earth. In recent years, some researchers believe that the large magnetostriction is mainly due to the large tetragonal distortion caused by the rare earth atoms entering the A2 matrix of Fe-Ga alloy. However, it is still not clear how rare earth doping cause large tetragonal distortion of A2 matrix in Fe-Ga alloy and what interaction of rare earth dopants with tetragonal nano-heterogeneities modified DO3 phase in A2 matrix.
In this paper, we first analyzed the reason of selection of rare earth elements doped Fe-Ga alloy. Then, the influence of rare earth element doping on Fe-Ga alloy property was analyzed. Finally, the theoretical mechanism of large magnetostrictive property of Fe-Ga alloy caused by rare earth element doping was summarized in detail, and the future development direction of this kind of alloy was prospected.
Key words:  Fe-Ga alloys    magnetostrictive properties    rare earth element    element doping
                    发布日期:  2020-04-10
ZTFLH:  TM273  
基金资助: 国家自然科学基金(51661027); 内蒙古自然科学基金(2019MS05002)
通讯作者:  nsdtx@126.com;ndyzq@imau.edu.cn   
作者简介:  王瑞,2016年6月毕业于运城学院,获得工学学士学位。现为内蒙古师范大学物理与电子信息学院研究生,在田晓教授的指导下进行研究。目前主要研究领域为磁性材料。
田晓,内蒙古师范大学物理与电子信息学院教授、硕士研究生导师。2010年在内蒙古工业大学获博士学位,2011—2015年在内蒙古大学进行博士后研究工作。2015—2016年在北京大学化学与分子工程学院做访问学者。主要从事新能源材料、磁性材料的研究。近年来,在新能源材料和磁性材料领域发表论文40多篇,部分研究成果发表在Int.J.Hydrogen Energy、J.Alloys Compd.、J.Mater.Eng.Perform.等重要杂志,出版了《金属储氢电极》学术专著。
姚占全,内蒙古农业大学水利与土木建筑工程学院教授、博士研究生导师。主要从事磁性材料、建筑结构材料研究。近年来,主持国家自然科学基金项目1项,发表论文近30篇,出版《稀土掺杂新型Fe-Ga磁致伸缩材料研究》学术专著1部。
引用本文:    
王瑞, 赵宣, 赵丽娟, 闫静, 田晓, 姚占全. 微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展[J]. 材料导报, 2020, 34(7): 7146-7153.
WANG Rui, ZHAO Xuan, ZHAO Lijuan, YAN Jing, TIAN Xiao, YAO Zhanquan. Research Progress on the Enhanced Magnetostrictive Properties of Fe-Ga Alloys Induced by Trace Rare Earth Doping. Materials Reports, 2020, 34(7): 7146-7153.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030160  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7146
1 Guruswamy S, Srisukhumbowornchai N, Clark A E, et al. Scripta Materialia, 2000, 43(3), 239.
2 Clark A E, Wun-Fogle M, Restorff J B, et al. Journal of Applied Phy-sics, DOI: 10.1063/1.1845933.
3 Clark A E, Fogle M W, Restorff J B, et al. IEEE Transactions on Magnetics, 2001, 37(4), 2678.
4 Huang M L, Lograsso T A, Clark A E, et al. Journal of Applied Physics, DOI: 10.1063/1.2829402.
5 Huang M L, Du Y Z, Mc Queeney R J, et al. Journal of Applied Phy-sics,DOI: 10.1063/1.3311884.
6 Bormio-Nunes C, Dos Santos C T, Leandro I F, et al. Journal of Applied Physics, DOI: 10.1063/1.3561782.
7 Clark A E, Restorf J B, Wun-Fogle M, et al. Journal of Applied Physics,DOI: 10.1063/1.2670376.
8 Restorff J B, Wun-Fogle M, Clark A E, et al. Journal of Applied Phy-sics, 2002, 91(10),8225.
9 Bormio-Nunes C, Sato Turtelli R, Mueller H, et al. Journal of Magnetic Materials, 2005, 290-291, 820.
10 Mungsantisuk P, Corson R P, Guruswamy S, et al. Journal of Applied Physics, DOI: 10.1063/1.2149491.
11 Liu G H. Rare earth materials science,Chemical Industry Press, China, 2007(in Chinese).
刘光华. 稀土材料学,化学工业出版社, 2007.
12 He Y K, Jiang C B, Wu W, et al. Acta Materialia, 2016, 109, 177.
13 Yao Z Q, Tian X, Jiang L P, et al. Journal of Alloys and Compounds, 2015, 637, 431.
14 Liang Y P, Hao H B, Wang T T, et al. Rare Earth, 2016, 37(6), 75(in Chinese).
梁雨萍, 郝宏波, 王婷婷, 等. 稀土, 2016, 37(6), 75.
15 Barua R, Taheri P, Chen Y J, et al. Materials, DOI: 10.3390/ma11061039.
16 Li J H, Xiao X M, Yuan C, et al. Journal of Rare Earths, 2015, 33(10), 1087.
17 Jiang L P, Zhang G R, Yang J D, et al.Journal of Rare Earths, 2010, 28, 409.
18 Gong P, Jiang L P, Zhao Z Q, et al. Rare Metal Materials and Enginee-ring, 2013, 42(10), 2139(in Chinese).
龚沛,江丽萍,赵增祺,等.稀有金属材料与工程, 2013, 42(10),2139.
19 Meng C Z, Jiang C B.Scripta Materialia, 2016, 114, 9.
20 Emdadi A, Palacheva V V, Balagurov А M, et al. Intermetallics, 2018, 93, 55.
21 Golovin I S, Balagurov A M, Palacheva V V, et al. Journal of Alloys and Compounds, 2017, 707, 51.
22 Wei W, Liu J H, Jiang C B. Journal of Alloys and Compounds, 2015, 622, 379.
23 Zhang S X, Wu W, Zhu X X, et al. Rare Metals, 2014, 33(3), 309.
24 Fitchorov Trifon I, Bennett S, Jiang L P, et al. Acta Materialia, 2014, 73, 19.
25 Jin T Y, Wu W, Jiang C B. Scripta Materialia, 2014, 74, 100.
26 Wu W, Jiang C B. Rare Metals, 2017, 36, 18.
27 Zhao L J, Tian X, Yao Z Q, et al. Materials Review B: Research Papers, 2018, 32(8), 2832(in Chinese).
赵丽娟, 田晓, 姚占全, 等. 材料导报:研究篇, 2018, 32(8), 2832.
28 Zhao L J, Tian X, Yao Z Q, et al. Solid State Phenomena, 2018, 288(27-36), 1662.
29 Yuan C, Li J H, Zhang W L, et al. Journal of Magnetism and Magnetic Materials, 2015, 374, 459.
30 Han Y J, Wang H, Zhang T L, et al. Scripta Materialia, 2018, 150, 101.
31 Meng C, Wang H, Wu Y, et al. Scientific Reports, DOI: 10.1038/srep34258.
32 Meng C Z, Wu Y Y, Jiang C B. Materials & Design, 2017, 130, 183.
33 Zhou T D, Zhang Y, Luan D C, et al. Journal of Rare Earths, 2018, 36(7), 721.
34 Lograsso T A, Ross A R, Schlagel D L, et al. Journal of Alloys and Compounds, 2003, 350(1-2), 95.
35 Lograsso T A, Summers A E M. Materials Science and Engineering A, 2006, 416(1-2), 240.
36 He Y K, Ke X Q, Jing C B, et al. Advanced Functional Materials,DOI: 10.1002/adfm.201800858.
37 Emdadi A, Palacheva V V, Cheverikin V V, et al. Journal of Alloys & Compounds, 2018, 758, 214.
38 Nouri K, Jemmali M, Walha S, et al. Journal of Alloys & Compounds, 2017, 719,256.
39 Atulasimha J, Flatau A B. Smart Materials and Structures, DOI: 10.1088/0964-1726/20/4/043001.
40 Wang Z B, Liu J H, Jiang C B. Chinese Physics B,DOI: 10.1088/1674-1056/19/11/117504.
41 Gong P, Jiang L P, Yan W J, et al. Rare Earth, 2016, 37(2), 91(in Chinese).
龚沛, 江丽萍, 闫文俊, 等. 稀土, 2016, 37(2), 91.
[1] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[2] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[3] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[4] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[5] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[6] 尚根峰, 黄嘉鹏, 汪航. Y,La改性Ni-10Cr-5Al合金的循环氧化行为研究[J]. 《材料导报》期刊社, 2018, 32(4): 584-588.
[7] 张烁, 宋江凤, 潘复生, 刘强, 杨丽. 微量硼添加对镁合金组织和性能影响的研究进展[J]. 材料导报, 2018, 32(19): 3405-3413.
[8] 赵丽娟, 田晓, 姚占全, 江丽萍. Fe及Fe83Ga17和Fe83Ga17Pr0.3合金的微结构与磁致伸缩性能[J]. 材料导报, 2018, 32(16): 2832-2836.
[9] 张赛楠, 潘利文, 罗涛, 黄丹琳, 董强, 胡治流. 稀土La和Ce及超声处理对ZL201铝合金显微组织及抗拉强度的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2452-2457.
[10] 李小强, 马国俊, 殷俊, 刘文宁. 稀土元素对镁合金力学行为影响的研究现状*[J]. 《材料导报》期刊社, 2017, 31(21): 82-89.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed