Research Progress of Micro Amount of Boron Addition on Microstructure and Properties of Magnesium Alloy
ZHANG Shuo1, SONG Jiangfeng1, PAN Fusheng1,2, LIU Qiang1, YANG Li1
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044; 2 Chongqing Academy of Science and Technology, Chongqing 401123
Abstract: In twenty-first century, due to the over exploitation and utilization of resources such as oil and coal, people pay more and more attention to energy saving and emission reduction. Therefore, lightweight structural materials are attracting more and more attention. Magnesium alloy is the lightest structural metallic material with good damping properties, electromagnetic shielding, and high specific strength and stiffness. It shows great potential to be used in aerospace, 3C (computer, communication, consumer electronics) products, automotive and other fields. However, the comprehensive properties and corrosion properties of Mg alloys need to be further improved. Since grain refinement can enhance the strength and plasticity simultaneously, it is of great importance to develop an effective and low-cost grain refiner to further improve the comprehensive properties of magnesium alloys. The commonly used grain refiners for magnesium alloys are usually Zr, Si, rare-earth elements and carbon containing modifiers. The presence of Al highly deteriorates the grain refinement of Zr. Thus, the grain refined of Zr is limited to magnesium alloys contains no Al. The addition of a large amount of Si will generate coarse Mg2Si phase in the alloy, which reduce the mechanical properties, only a small amount of Si addition will reduce the corrosion resistance of magnesium alloy greatly. The high cost and high density of rare earth limited its application in magnesium alloy. Carbon inoculation usually has good grain refinement on most of the Mg-Al alloys, but some carbon compounds cause a series of environmental problems such as CCl4, C2Cl6 etc. The introduction of carbon will increase the corrosion rate of magnesium alloy. B is a light element with low density, high melting point and high corrosion resis-tance. It is usually used as inoculant and grain refiner in aluminum alloy. In recent years, many researchers have done in-depth research on B compounds, it is found that B will form compounds with most metals, and most of the compounds has close-packed hexagonal structure, which have strong affinity with magnesium alloys. So, B has a great potential to act as heterogeneous nucleation site and refine the grains of Mg alloys. However, up to the author’s best knowledge, no one has summarized the influence of B additions with different type on the microstructure and properties of magnesium alloys and the corresponding mechanism. In this paper, the experimental study on the addition of trace B in magnesium alloy structural materials has been summarized. The mechanism of grain refinement and strengthening of B in several Mg alloys are analyzed. Besides, the prospect of application of B in magnesium alloy is presented. It is considered that B is an element with great research and application value in the development of magnesium alloy, especially in the Al containing alloys.
张烁, 宋江凤, 潘复生, 刘强, 杨丽. 微量硼添加对镁合金组织和性能影响的研究进展[J]. 材料导报, 2018, 32(19): 3405-3413.
ZHANG Shuo, SONG Jiangfeng, PAN Fusheng, LIU Qiang, YANG Li. Research Progress of Micro Amount of Boron Addition on Microstructure and Properties of Magnesium Alloy. Materials Reports, 2018, 32(19): 3405-3413.
1 Luo A A. Magnesium casting technology for structural applications[J].Journal of Magnesium & Alloys,2013,1(1):2. 2 Chang H W, Qiu D, Taylor J A, et al. The role of Al2Y in grain refinement in Mg-Al-Y alloy system[J].Journal of Magnesium & Alloys,2013,1(1):115. 3 Hu Hongjun, Zhang D F, Yang M B, et al. Grain refinement in AZ31 magnesium alloy rod fabricated by extrusion-shearing severe plastic deformation process[J].Transactions of Nonferrous Metals Society of China,2011,21(2):243. 4 Lorimer G W, Robson J. Review on research and development of magnesium alloys[J].Acta Metallurgica Sinica,2008,21(5):313. 5 Ding W J, Jin L, Wu W X, et al. Texture and texture optimization of wrought Mg alloy[J].Chinese Journal of Nonferrous Metals,2011,21(10):2371(in Chinese). 丁文江,靳丽,吴文祥,等.变形镁合金中的织构及其优化设计[J].中国有色金属学报,2011,21(10):2371. 6 Wu Guohua, Xiao H, Zhou H Z, et al. Anisotropy of warm-tempe-rature tensile properties of extruded AZ31 magnesium alloy[J].Chinese Journal of Nonferrous Metals,2017,27(1):57(in Chinese). 吴国华,肖寒,周慧子,等.挤压态AZ31镁合金温热拉伸性能的各向异性[J].中国有色金属学报,2017,27(1):57. 7 Rokhlin L L. Structure and properties of alloys of the Mg-REM system[J].Metal Science & Heat Treatment,2006,48(11-12):487. 8 Liu H, Tang D, Hu S, et al. Effects of rare earth y on the microstructure and mechanical properties of AZ31 magnesium alloy sheets[J].Rare Metal Materials and Engineering,2013,42(7):1372. 9 Trivedi P, Nune K C, Misra R D K. Degradation behaviour of magnesium-rare earth biomedical alloys[J].Materials Technology,2016,31(12):726. 10 郑学家.硼化合物手册[M].北京:化学工业出版社,2010. 11 王顺兴.金属热处理原理与工艺[M].哈尔滨:哈尔滨工业大学出版社,2009. 12 郑学家.金属硼化物与含硼合金[M].北京:化学工业出版社,2012. 13 Fakhraei O, Emamy M, Farhangi H. The effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy[J].Materials Science and Engineering A,2013,560(2):148. 14 Kumar G S V, Murty B S, Chakraborty M. Grain refinement response of LM25 alloy towards Al-Ti-C and Al-Ti-B grain refiners[J].Journal of Alloys and Compounds,2009,472(1-2):112. 15 Birol Y. Performance of AlTi5B1, AlTi3B3 and AlB3 master alloys in refining grain structure of aluminium foundry alloys[J].Materials Science and Technology,2013,28(4):481. 16 郑学家,于金芝,于德江.新型含硼材料[M].北京:化学工业出版社,2010. 17 Amerioon A, Emamy M, Ashuri G. Investigation the effect of Al-5Ti-1B grain refiner and T6 heat treatment on tensile properties of Al-8%Mg[J].Procedia Materials Science,2015,11(2):32. 18 Xu X L. Study on phase formation and reaction kinetics of Al-B system[D].Shenyang:Northeastern University,2010(in Chinese). 徐晓雷.Al-B体系成相及反应动力学研究[D].沈阳:东北大学,2010. 19 马图哈.非铁合金的结构与性能[M].北京:科学出版社,1999. 20 Nishino N, Kawahara H, Shimizu Y, et al. Grain refinement of magnesium casting alloys by boron addition[M]∥Magnesium Alloys and their Applications. Wiley-VCH Verlag GmbH & Co. KGaA,2006. 21 Graulis S, Dakevi A, Merkys A, et al. Crystallography open database (COD): An open-access collection of crystal structures and platform for world-wide collaboration[J].Nucleic Acids Research,2012,40:D420. 22 Carlson O N. The Al-B (aluminum-boron) system[J].Journal of Phase Equilibria,1990,11(6):560. 23 Zhang A S, Fang Z Z, Yan M M. Effects of boron on microstructure and property of AZ91 magnesium alloy[J].Hot Working Technology,2006,35(24):28(in Chinese). 章爱生,方占召,严明明.硼对AZ91镁合金组织及性能的影响[J].热加工工艺,2006,35(24):28. 24 Suresh M, Srinivasan A, Ravi K R, et al. Influence of boron addition on the grain refinement and mechanical properties of AZ91 Mg alloy[J].Materials Science & Engineering A,2009,525(1-2):207. 25 Chen J Y, Guan S K, Shi G X, et al. Effects of B on microstructure and properties of Mg-7Al-0.4Zn-0.2Mn alloy[J].Special Casting & Nonferrous Alloys,2005(8):454(in Chinese). 陈晶阳,关绍康,石广新,等.硼对Mg-7A1-0.4Zn-0.2Mn合金组织及性能的影响[J].特种铸造及有色合金,2005(8):454. 26 Arrabal R, Pardo A, Merino M C, et al. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5wt.% NaCl solution[J].Corrosion Science,2012,55(2):301. 27 Danaie M, Asmussen R M, Jakupi P, et al. The role of aluminum distribution on the local corrosion resistance of the microstructure in a sand-cast AM50 alloy[J].Corrosion Science,2013,77(12):151. 28 Song G L, Atrens A. Corrosion mechanisms of magnesium alloys[J].Advanced Engineering Materials,1999,1(1):11. 29 Chen J Y, Guan S K, Wang J Q, et al. Effect of boron on corrosion resistance of Mg-7Al-0.4Zn-0.2Mn alloy[J].Materials Protection,2005,38(10):5(in Chinese). 陈晶阳,关绍康,王建强,等.微量硼对镁合金耐腐蚀性能的影响[J].材料保护,2005,38(10):5. 30 Liu J B. The impact of B content on the corrosion resistance and microstructure of AZ91 magnesium alloy[J].Value Engineering,2012,31(9):23(in Chinese). 刘建勃.硼对AZ91镁合金显微组织和腐蚀性能的影响[J].价值工程,2012,31(9):23. 31 Wang X, Liu Z, Dai W, et al. On the understanding of aluminum grain refinement by Al-Ti-B type master alloys[J].Metallurgical and Materials Transactions B,2015,46(4):1620. 32 Zhang L, Jiang H, Zhao J, et al. A new understanding toward effect of solute Ti on grain refinement of aluminum by Al-Ti-B master alloy: Kinetic behaviors of TiB2 particles and effect of solute Ti[J].Acta Metallurgica Sinica,2017,53(9):1091. 33 Nakama Y, Ohtani H, Hasebe M. Thermodynamic analysis of the Nb-Ti-B ternary phase diagram[J].Materials Transactions,2009,50(5):984. 34 Abdallah E, Ravindran C, Murty B S. Effect of Al-Ti-B based master alloys on grain refinement and hot tearing susceptibility of AZ91E magnesium alloy[J].Materials Science Forum,2011,690:351. 35 Zhang M X, Kelly P M, Easton M A, et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model[J].Acta Materialia,2005,53(5):1427. 36 Kelly P M, Ren H P, Qiu D, et al. Identifying close-packed planes in complex crystal structures[J].Acta Materialia,2010,58(8):3091. 37 Wang Y, Zeng X, Ding W. Effect of Al-4Ti-5B master alloy on the grain refinement of AZ31 magnesium alloy[J].Scripta Materialia,2006,54(2):269. 38 Wang Y X. Study on microstructure and mechanical properties of Mg-8Zn-4A1-0.3Mn-x(Y) magnesium alloys[D].Zhengzhou: Zhengzhou University,2003(in Chinese). 王迎新.Mg-8Zn-4Al-0.3Mn-x(Y)合金显微组织及力学性能的研究[D].郑州:郑州大学,2003. 39 Li D S, Cheng X N, Li D. Effect of addition Ti and B on microstructure and mechanical properties of AM50 magtesion alloy[J].Mate-rials for Mechanical Engineering,2006,30(11):45(in Chinese). 李冬升,程晓农,李丹.微量钛、硼对AM50镁合金组织和性能的影响[J].机械工程材料,2006,30(11):45. 40 Ma X L, Wang X, Li X L, et al. Effect of Al5Ti1B master alloy on microstructures and properties of AZ61 alloys[J].Chinese Journal of Nonferrous Metals,2010,20(s2):397. 41 Chen J Y. Effect of modification on microstructure and properties of AZ70 deformed magnesium alloy[D].Zhengzhou:Zhengzhou University,2005(in Chinese). 陈晶阳.变质处理对AZ70变形镁合金组织及性能影响的研究[D].郑州:郑州大学,2005. 42 Vlasceanu M, Sin S L, Elsayed A, et al. Effect of Al-5Ti-1B on grain refinement, dendrite coherency and porosity of AZ91E magnesium alloy[J].Cast Metals,2014,28(1):39. 43 Chen T J, Wang R Q, Ma Y, et al. Grain refinement of AZ91D magnesium alloy by Al-Ti-B master alloy and its effect on mechanical properties[J].Materials & Design,2012,34(1):637. 44 Zhang Q, Liu B, Niu Z, et al. Grain refinement and mechanical properties of Mg-5Li-3Al alloy inoculated by Al-5Ti-1B master alloy[J].Materials Science & Engineering A,2014,619:152. 45 Chen J Y, Guan S K, Lin D W, et al. Effects of Al3Ti4B master alloy on microstructure and properties of Mg-7Al-0.4Zn-0.2Mn alloys[J].Chinese Journal of Nonferrous Metals,2005,15(3):478(in Chinese). 陈晶阳,关绍康,林敦文,等.Al3Ti4B中间合金对Mg-7Al-0.4Zn-0.2Mn合金显微组织和性能的影响[J].中国有色金属学报,2005,15(3):478. 46 Chen Q, Tang A, Xu T, et al. High performance cast magne-sium rare-earth alloys: Retrospect and prospect[J].Materials Review A:Review Papers,2016,30(9):1(in Chinese). 陈巧旺,汤爱涛,许婷熠,等.高性能铸造稀土镁合金的发展[J].材料导报:综述篇,2016,30(9):1. 47 Qi X H. Effect of Ca, Si and B, RE joint additions on microstructures and mechanical properties of AM60 magnesium alloy[D].Zhengzhou: Zhengzhou University,2004(in Chinese). 齐新华.复合微合金化(Ca+Si;B+RE)对AM60合金组织和性能的影响[D].郑州:郑州大学,2004. 48 Meng J, Yang Q, Tian Z, et al. Microstructures and tensile properties of Mg-4Al-4La-0.4Mn-xB (x=0, 0.01, 0.02, 0.03) alloy[J].Journal of Alloys & Compounds,2013,572(12):129. 49 Zhao D G, Tian C W, Liu Y T, et al. Effects of Nd and B combined addition on microstructure and mechanical properties of AZ91 magnesium alloy[J].Shandong Science,2011,24(4):23(in Chinese). 赵德刚,田长文,刘运腾,等.复合添加Nd与B对AZ91镁合金组织和力学性能的影响[J].山东科学,2011,24(4):23. 50 Yang K, Zhang J, Zong X, et al. Effect of microalloying with boron on the microstructure and mechanical properties of Mg-Zn-Y-Mn alloy[J].Materials Science & Engineering A,2016,669: 340. 51 Zhang L, Zhou W, Hu P, et al. Effect of Al-3Nb-1B master alloy on the grain refinement of AZ91D magnesium alloy[J].Metallurgical and Materials Transactions B,2016,47(3):1999.