Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 584-588    https://doi.org/10.11896/j.issn.1005-023X.2018.04.015
  材料研究 |
Y,La改性Ni-10Cr-5Al合金的循环氧化行为研究
尚根峰1, 黄嘉鹏1, 汪航2
1 江西理工大学材料科学与工程学院,赣州 341000;
2 江西理工大学工程研究院,赣州 341000
Study on Cyclic Oxidation Behavior of Y and La Modified Ni-10Cr-5Al Alloys
SHANG Genfeng1, HUANG Jiapeng1, WANG Hang2
1 School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000;
2 Institute of Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
下载:  全 文 ( PDF ) ( 2391KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过添加0.1%(质量分数)的单一稀土La和复合稀土Y-La,研究了两种含稀土的Ni-10Cr-5Al(质量分数,%)合金在1 100 ℃和1 200 ℃下的高温循环氧化行为。采用热重法并结合X射线衍射、扫描电子显微镜、能谱仪等,研究了合金的循环氧化动力学、氧化物的物相和组织成分等演变规律,分析了含稀土Ni-10Cr-5Al合金的氧化膜粘附性能在不同氧化温度下的差异及机制。结果表明,在1 100 ℃时,Ni-10Cr-5Al合金中添加0.1%(质量分数)的La或Y-La,不仅减少了氧化膜的厚度,而且因形成“钉扎”作用提高了氧化膜的粘附性,从而改善了合金的抗循环氧化性能。且复合添加Y-La的效果优于单一添加La的效果。但在1 200 ℃时,合金沿晶界的内氧化加快,反而恶化了合金的抗循环氧化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尚根峰
黄嘉鹏
汪航
关键词:  NiCrAl合金  循环氧化  稀土元素  活性元素效应    
Abstract: The cyclic oxidation behavior of Ni-10Cr-5Al (mass fraction,%) alloys containing 0.1% (mass fraction) La or Y-La at 1 100 ℃ and 1 200 ℃ was studied. The kinetics of cyclic oxidation of the alloys were studied by means of thermogravimetric analysis, and the evolution rules of phase, microstructure and composition of the oxides were studied by X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The difference of the adhesion of the surface scale of Ni-10Cr-5Al alloys containing La or Y-La at different oxidation temperature was analyzed. The results indicated that the addition of 0.1% (mass fraction) La or Y-La in Ni-10Cr-5Al alloy could not only reduce the thickness of the oxide film, but also improve the adhesion of the oxide film due to the formation of “pinning”, thus the anti-oxidation performance at 1 100 ℃ of the alloys were improved. While the effect of co-doping Y-La was better than that of single adding of La. However, the anti-oxidation performance at 1 200 ℃ of the alloys was deteriorate owing to the severe internal oxidation along the grain boundary.
Key words:  NiCrAl alloy    cyclic oxidation    rare earth elements    reactive element effect (REE)
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG146  
  V252.2  
基金资助: 国家自然科学基金(51401095); 江西省自然科学基金(20171BAB216004); 江西省科技厅留学归国人员扶助计划(20161BBH80030); 江西理工大学博士启动基金(jxxjbs15001)
通讯作者:  汪航:,男,1984年生,博士,副教授,研究方向为合金相图热力学、相变动力学及高温合金设计与优化 E-mail:wanghang84@hotmail.com   
作者简介:  尚根峰:男,1992年生,硕士研究生,研究方向为镍基高温合金的凝固与氧化行为 E-mail:2461626989@qq.com
引用本文:    
尚根峰, 黄嘉鹏, 汪航. Y,La改性Ni-10Cr-5Al合金的循环氧化行为研究[J]. 《材料导报》期刊社, 2018, 32(4): 584-588.
SHANG Genfeng, HUANG Jiapeng, WANG Hang. Study on Cyclic Oxidation Behavior of Y and La Modified Ni-10Cr-5Al Alloys. Materials Reports, 2018, 32(4): 584-588.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.015  或          http://www.mater-rep.com/CN/Y2018/V32/I4/584
1 Anderson I E, Gleeson B, Terpstra R L. Development of metallic hot gas filters[C]//Office of Fossil Energy.Washington District of Columbia,United States,2003:1.
2 Peng X, Wang F. High-temperature oxidation of aerospace materials[M].Boca Raton:Chemical Rubber Company Press,2012:237.
3 Naumenko D, Pint B A, Quadakkers W J. Current thoughts on reactive element effects in alumina-forming systems: In memory of John Stringer[J].Oxidation of Metals,2016,86(1):1.
4 Pint B A. Progress in understanding the reactive element effect since the Whittle and Stringer literature review[C]//Proc. John Stringer Symposium on High Temperature Corrosion.ASM International Materials Park,OH:American Society for Microbiology,2003:9.
5 Heuer A H, Hovis D B, Smialek J L, et al. Alumina scale formation: A new perspective[J].Journal of the American Ceramic Society,2011,94(s1):s146.
6 Xu K D, Ren Z M, Li C J. Progress in application of rare metals in superalloys[J].Rare Metals,2014,33(2):111.
7 Li M S, Zhang Y M. A review on effect of reactive elements on oxidation of metals[J].Corrosion Science and Protection Technology,2001,13(6):333(in Chinese).
李美栓,张亚明.活性元素对合金高温氧化的作用机制[J].腐蚀科学与防护技术,2001,13(6):333.
8 Whittle D P, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions[J].Philosophical Transactions of the Royal Society of London.Series A,Mathematical and Physical Sciences,1980,295:309.
9 Ramanarayanan T A,Ayer R,Petkovic-Luton R,et al.The influence of yttrium on oxide scale growth and adherence[J].Oxidation of Metals,1988,29(5-6):445.
10 Khanna A S, Wasserfuhr C, Quadakkers W J, et al. Addition of yttrium, cerium and hafnium to combat the deleterious effect of sulphur impurity during oxidation of an Ni-Cr-Al alloy[J].Materials Science and Engineering A,1989,120(1):185.
11 Ul-Hamid A. TEM study of scale microstructures formed on Ni-10Cr and Ni-10Cr-5Al alloys with and without Y addition[J].Oxidation of Metals,2002,58(1-2):41.
12 Bennett I J, Sloof W G. The influence of reactive element additions to β-NiAlCr alloys on the morphology of thermally grown oxides[J].Materials at High Temperatures,2003,20(3):395.
13 Tawancy H M.On the behaviour of minor active elements during oxidation of selected Ni-base high-temperature alloys[J].Materials at High Temperatures,2017,34(1):22.
14 Khanna A S, Jonas H, Quadakkers W J. Use of acoustic emission technique to study the spallingbehaviour of oxide scales on Ni-10Cr-8Al containing sulphur and/or yttrium impurity[J].Materials & Corrosion,1989,40(9):552.
15 Kumar A, Nasrallah M, Douglass D L. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys[J].Oxidation of Metals,1974,8(4):227.
16 Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect[J].Oxidation of Metals,1996,45(1):1.
17 Ul-Hamid A. TEM study of the effect of Y on the scale microstructures of Cr2O3-and Al2O3-forming alloys[J].Oxidation of Metals,2002,58(1-2):23.
18 Ramanathan L V. Role of rare-earth elements on high temperature oxidation behavior of FeCr, NiCr and NiCrAlalloys[J].Corrosion Science,1993,35(s5):871.
19 Sarioglu S, Blachere J R, Pettit F S, et al. The effects of reactive element additions, sulfur removal, and specimen thickness on the oxidation behaviour of alumina-forming Ni-and Fe-base alloys[J].Materials Science Forum,1997,251-254:405.
20 Hou P Y. Segregation phenomena at thermally grown Al2O3/alloy interfaces[J].Annual Review of Materials Research,2008,38(38):275.
21 Golightly F A, Stott F H, Wood G C. The influence of yttrium additions on the oxide-scale adhension to an iron-chromium-aluminum alloy[J].Oxidation of Metals,1976,10(3):163.
22 Song L. Effect of Y on high temperature oxidation resistance of a directionally solidified superalloy[J].Journal of Rare Earths,2004,22(6):794.
23 Chen S F, Ma H P, Ju Q, et al. Effect of rare earth element lanthanum on oxidation behavior of GH230 at 1 000 ℃ in air[J].Journal of Iron and Steel Research International,2009,21(11):45(in Chinese).
陈石富,马惠萍,鞠泉,等.稀土元素La对GH230合金1 000 ℃抗氧化性能的影响[J].钢铁研究学报,2009,21(11):45.
24 Pint B A, Alexander K B. Grain boundary segregation of cation dopants in α-Al2O3scales[J].Journal of the Electrochemical Society,1996,145(6):1819.
25 Guo H B, Li D Q, Zheng L, et al. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1 200 ℃[J]. Corrosion Science,2014,88(88):197.
26 Pint B A. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys[J].Journal of the American Ceramic Society,2003,86(4):686.
27 Pint B A, Tortorelli P F, Wright I G. Effect of cycle frequency on high-temperature oxidation behavior of alumina-forming alloys[J].Oxidation of Metals,2002,58(1):73.
[1] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[2] 张烁, 宋江凤, 潘复生, 刘强, 杨丽. 微量硼添加对镁合金组织和性能影响的研究进展[J]. 材料导报, 2018, 32(19): 3405-3413.
[3] 张赛楠, 潘利文, 罗涛, 黄丹琳, 董强, 胡治流. 稀土La和Ce及超声处理对ZL201铝合金显微组织及抗拉强度的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2452-2457.
[4] 李小强, 马国俊, 殷俊, 刘文宁. 稀土元素对镁合金力学行为影响的研究现状*[J]. 《材料导报》期刊社, 2017, 31(21): 82-89.
[5] 谭晓晓, 马利影. 氧化物弥散强化高温合金抗氧化性能的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 121-127.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed