Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 82-89    https://doi.org/10.11896/j.issn.1005-023X.2017.021.012
  材料综述 |
稀土元素对镁合金力学行为影响的研究现状*
李小强, 马国俊, 殷俊, 刘文宁
青海大学高性能轻金属合金及深加工国家地方联合工程研究中心,西宁 810016
Rare Earth Alloying: Toward High Mechanical Properties for Magnesium Alloys
LI Xiaoqiang, MA Guojun, YIN Jun, LIU Wenning
Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016
下载:  全 文 ( PDF ) ( 2662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 系统论述了不同稀土元素的结构特性,基于镁合金的强化机制,并结合当前稀土镁合金的研究现状,展示了稀土元素的添加对镁合金在强度、塑性及抗蠕变性能等方面带来的变化,尤其是对镁合金塑性的影响。其中,区别于传统的强化机制,对添加稀土元素后出现的LPSO结构相对镁合金性能的影响也进行了重点讨论,进一步对镁合金中的稀土元素合金化后的改性作用及前景进行了探讨和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李小强
马国俊
殷俊
刘文宁
关键词:  镁合金  稀土元素  微观组织  长周期堆垛结构相(LPSO)  力学性能    
Abstract: The basic mechanisms of rare earth elements additions in magnesium alloys were reviewed, including the solid solution strengthening, grain refinement and long period stacking ordered (LPSO) phase. A brief overview of the available rare earth elements was given, along with a summary of the type, the special mechanism, chemical or physical effects and other unique properties achieved by previous researches on the rare earth element additions on magnesium alloys. Finally, certain challenging problems that the research faced and future expectations of Mg-RE alloys were stated and discussed.
Key words:  magnesium alloys    rare earth elements    microstructure    LPSO phase    mechanical properties
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TB31  
基金资助: *青海省科技厅项目(2015-ZJ-736);教育部春晖计划项目(Z2015035)
通讯作者:  马国俊,男,1981年生,博士,副教授,主要从事粉末冶金制备铝、镁合金及复合材料性能研究 E-mail:mgj2150@126.com   
作者简介:  李小强:男,1990年生,硕士研究生,主要从事镁合金及其复合材料性能的研究
引用本文:    
李小强, 马国俊, 殷俊, 刘文宁. 稀土元素对镁合金力学行为影响的研究现状*[J]. 《材料导报》期刊社, 2017, 31(21): 82-89.
LI Xiaoqiang, MA Guojun, YIN Jun, LIU Wenning. Rare Earth Alloying: Toward High Mechanical Properties for Magnesium Alloys. Materials Reports, 2017, 31(21): 82-89.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.012  或          http://www.mater-rep.com/CN/Y2017/V31/I21/82
1 Kainer K U, Kaiser F. Magnesium alloys and technology[M]. Germany:Deutsche Gesellschaft für Materialkunde, Wiley-VCH, 2003.
2 Dowling, Norman E. Mechanical behavior of materials[M]. Japan: Society of Materials Science, 1972.
3 Zhang D F, Xia S, Pan F S, et al. Research status of effect of rare earth element on mechanical properties of magnesium alloys[J]. J Funct Mater, 2014,45(5):05001(in Chinese).
4 Goh C S, Wei J, Lee L C, et al. Properties and deformation beha-vior of Mg-Y2O3 nanocomposites[J]. Acta Mater, 2007,55(15):5115.
5 Zhang J, Tang D, Zhang H, et al. Effect and application of rare earth element in magnesium alloys[J]. Chin J Rare Met, 2008,32(5):659(in Chinese).
6 Zheng X, Dong J, Yin D, et al. Forge ability and die-forging for-ming of direct chill casting Mg-Nd-Zn-Zr magnesium alloy[J]. Mater Sci Eng A, 2010, 527(16-17): 3690.
7 Rashad M, Pan F, Asif M, et al. Enhanced ductility of Mg-3Al-1Zn alloy reinforced with short length multi-walled carbon nanotubes using a powder metallurgy method[J]. Prog Nat Sci, 2015,25(4):276.
8 Freeney T A, Mishra R S. Effect of friction stir processing on microstructure and mechanical properties of a cast-magnesium-rare earth alloy[J]. Metall Mater Trans A, 2010,41(1):73.
9 Loke W H, Ibrahim R, Lathabai S. Improving the microstructure and mechanical properties of a cast Mg-9al-1zn alloy using friction stir processing[J]. Heat Treat Met, 2016, 838-839(7): 214.
10Mostaed E, Fabrizi A, Dellasega D, et al. Microstructure, mechanical behavior and low temperature superplasticity of ECAP processed ZM21 Mg alloy[J]. J Alloys Compd, 2015,638:267.
11Sun J, Chang-Jin L I, Liu Y Q, et al. Thermo-mechanical treatment of Mg-8%Al-2%Ga magnesium alloy[J]. Foundry, 2014,23(4):1(in Chinese).
12Peng Y, Cammarata R C, Falk M L. Atomistic simulation of solid solution hardening in Mg/Al alloys: Examination of composition scaling and thermo-mechanical relationships[J]. Acta Mater, 2016,105:378.
13Wu B L, Chen B, Wang C W, et al. Corrosion behavior of a novel Mg-13Li-X alloy with different grain sizes by rapid solidification rate[J]. Rare Met, 2015, 7:1.
14Yang Q, Jiang B, Jiang W, et al. Evolution of microstructure and mechanical properties of Mg-Mn-Ce alloys under hot extrusion[J]. Mater Sci Eng A, 2015,628:143.
15Yu W B, Liu Z, Cheng N, et al. Research and development of wrought magnesium alloy containing rare earth elements[J]. Mater Rev, 2006,20(11):65(in Chinese).
16Zucchi F, Grassi V, Frignani A, et al. Electrochemical behavior of a magnesium alloy containing rare earth elements[J]. J Appl Electrochem, 2006,36(2):195.
17Bae D H, Kim Y, Kim I J. Thermally stable quasicrystalline phase in a superplastic Mg-Zn-Y-Zr alloy[J]. Mater Lett, 2006, 60(17-18): 2190.
18Tang W N, Chen R S, Han E H. Superplastic behaviors of a Mg-Zn-Y-Zr alloy processed by extrusion and equal channel angular extrusion[J]. J Alloys Compd, 2009, 477(1-2): 636.
19Xu C, Zheng M Y, Xu S W, et al. Microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloy sheets processed by combined processes of extrusion, hot rolling and ageing[J]. Mater Sci Eng A, 2013, 559(3): 844.
20Wu A R, Xia C Q. Study of the microstructure and mechanical pro-perties of Mg-rare earth alloys[J]. Mater Des, 2007,28(6):1963.
21Gao L, Chen R S, Han E H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys[J]. J Alloys Compd, 2009, 481(1-2): 379.
22Xu K D, Ren Z M, Li C J. Progress in application of rare metals in superalloys[J]. Rare Met, 2014,58(2):111.
23Zucchi F, Grassi V, Frignani A, et al. Electrochemical behavior of a magnesium alloy containing rare earth elements[J]. J Appl Electrochem, 2006,36(2):195.
24Quan G Z, Shi Y, Wang Y X, et al. Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data[J]. Mater Sci Eng A, 2011, 528(28):8051.
25Issa A A. Computational investigation of precipitates in Mg-RE alloys with applications to Mg-X systems[J]. Dissert Theses-Gradworks, 2014,23:45.
26Li T, Zhang H, He Y, et al. Microstructure, mechanical properties and in vitro degradation behavior of a novel biodegradable Mg-1.5Zn-0.6Zr-0.2Sc alloy[J]. J Mater Sci Technol, 2015,31(7):744.
27Li C G, Chen Minfang, Sun S Z, et al. Study on the corrosion behavior in vitro and mechanical properties of the FHA Coated Mg-Zn-Zr alloy[J]. Mater Sci Forum, 2016,849:647.
28Xiong J, Chen Z, Yi L, et al. Microstructure and mechanical pro-perties of annealed Mg-0.6wt%Zr sheets by unidirectional and cross rolling[J]. Mater Sci Eng A, 2014, 590(1): 60.
29Le Q C, Zhang Z W, Cui J Z, et al. Microstructures and mechanical properties of Mg-2%Zn-0.4%RE alloys[J]. Trans Nonferr Met Soc China, 2010,20(2):325.
30Okuda H, Yamasaki M, Kawamura Y, et al. Nanoclusters first: A hierarchical phase transformation in a novel Mg alloy[J]. Sci Rep, 2015, 5: 10.
31Hagihara K, Kinoshita A, Sugino Y, et al. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy[J]. Acta Mater, 2010,58(19):6282.
32Hagihara K, Kinoshita A, Fukusumi Y, et al. High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase[J]. Mater Sci Eng A, 2013, 560(1): 71.
33Matsuda M, Ii S, Kawamura Y. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy[J]. Mater Sci Eng A, 2005, 393(1):269.
34Zhu Y M, Morton A J, Nie J F. Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys[J]. Acta Mater, 2012,60(19):6562.
35Xu C, Xu S W, Zheng M Y, et al. Microstructures and mechanical properties of high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by severe hot rolling[J]. J Alloys Compd, 2012,524:46.
36Hagihara K, Yokotani N, Umakoshi Y. Plastic deformation beha-vior of Mg12YZn with 18R long-period stacking ordered structure[J]. Intermetallics, 2010,18(2):267.
37Deng H Y. 24R-type LPSO microstructure of the novel Mg-Y-Zn alloy[J]. J Atomic Mol Sci, 2013,4(1):64.
38Hort N, Huang Y. Intermetallics in magnesium alloys[J]. Adv Eng Mater, 2006,8(4):235.
39Yu S X, Lv Q Y, Han J, et al. Preparation and performance of rare earths chemical conversion film on magnesium alloy[J]. J Rare Earths, 2006, 24(z2): 397.
40Yu S X, Cao J Y, Chen L. Corrosion resistance, composition and structure of RE chemical conversion coating on magnesium alloy[J]. Trans Nonferr Met Soc China, 2008, 18(S1): 349.
41Ba Z, Wang Z, Dai Y, et al. Preparation and corrosion resistance of carbonate composite conversion film on magnesium alloy[J]. Heat Treat Met, 2014,34(10):21(in Chinese).
42Jiang W. Research process of magnesium alloy and application of rare-earth elements in magnesium alloy[J]. Res Met Mater, 2009,35(1):24(in Chinese).
43Lu F, Ma A, Jiang J, et al. Enhanced mechanical properties and rolling formability of fine-grained Mg-Gd-Zn-Zr alloy produced by equal-channel angular pressing[J]. J Alloy Compd, 2015,643:28.
44Li Y L, Wang W X, Zhou J, et al. Hot deformation behaviors and processing maps of B4C/Al6061 neutron absorber composites[J]. Mater Charact, 2017,124(11):107.
45Jin G, Du W, Li J, et al. Effects of gadolinium addition on high temperature mechanical properties of Mg-2Al-1Zn alloy[J]. J Chin Rare Earth Soc, 2007,23(5):21.
46Mirzadeh H. Quantification of the strengthening effect of rare earth elements during hot deformation of Mg-Gd-Y-Zr magnesium alloy[J]. J Mater Res Technol, 2015,68(1):1.
47Alizadeh R, Mahmudi R, Langdon T G. Superplasticity of a fine-grained Mg-9Gd-4Y-0.4Zr alloy evaluated using shear punch testing[J]. J Mater Res Technol, 2014,3(3):228.
48Sarebanzadeh M, Roumina R, Mahmudi R, et al. Enhancement of superplasticity in a fine-grained Mg-3Gd-1Zn alloy processed by equal-channel angular pressing[J]. Mater Sci Eng A, 2015,646:249.
49Yang M, Liu Y H, Liu J A, et al. Corrosion and mechanical properties of AM50 magnesium alloy after being modified by 1 wt.% rare earth element gadolinium[J]. J Rare Earths, 2014,32(6):558.
50Shi L L, Huang Y, Yang L, et al. Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications[J]. J Mech Behav Biomed Mater, 2015,47:38.
51Wang S D, Xu D K, Wang B J, et al. Effect of corrosion attack on the fatigue behavior of an as-cast Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy[J]. Mater Des, 2015, 84(3-4):185.
52Jono Y, Yamasaki M, Kawamura Y. Quantitative evaluation of creep strain distribution in an extruded Mg-Zn-Gd alloy of multimodal microstructure[J]. Acta Mater, 2015,82(82):198.
53Yang Q, Xiao B L, Ma Z Y, et al. Achieving high strain rate superplasticity in Mg-Zn-Y-Zr alloy produced by friction stir processing[J]. Scripta Mater, 2011,65(4):335.
54Luo Z A, Xie G M, Ma Z Y, et al. Effect of yttrium addition on microstructural characteristics and superplastic behavior of friction stir processed ZK60 alloy[J]. J Mater Sci Technol, 2013,29(12):1116.
55Xie G M, Ma Z Y, Geng L. Effect of Y addition on microstructure and mechanical properties of friction stir welded ZK60 alloy[J]. J Mater Sci Technol, 2009,25(3):351.
56Li J B, Wang F, Mao P L, et al. Evolution of microstructure and tensile properties of extruded Mg-4Zn-1Y alloy[J]. J Rare Earths, 2014,32(12):1189.
57Xie G M, Luo Z A, et al. Superplastic behavior of friction stir processed ZK60 magnesium alloy[J]. Instrum Experim Techn, 1993,30(1):339.
58Rosalie J M, Somekawa H, Singh A, et al. Effect of precipitation on strength and ductility in a Mg-Zn-Y alloy[J]. J Alloy Compd, 2013, 550(2): 114.
59Mallick A, Tun K S, Gupta M. Deformation behavior of Mg/Y2O3 nanocomposite at elevated temperatures[J]. Mater Sci Eng A, 2012,551:222.
60Mirza F A, Chen D L, Li D J, et al. Effect of rare earth elements on deformation behavior of an extruded Mg-10Gd-3Y-0.5Zr alloy during compression[J]. Mater Des, 2013,46(4):411.
61Wu A, Xia C, Dong L. Distributing, evolvement and effect on the mechanical properties of the rare-earth Ce, Y in ZK60 Alloys[J]. Rare Met Mater Eng, 2007,36(11):1955(in Chinese).
62Ai L, Yuan S, Kang Y, et al. Effects of rare-earth ce on microstructure of AZ91D alloy[J]. Rare Met Lett, 2006,10(2):67(in Chinese).
63Zhang D, Tian Z, Tang D, et al. Effect of Ce/La on microstructure and creep property of die-cast AZ91D alloys[J]. Chin J Rare Met, 2010,34(2):202(in Chinese).
64Daroonparvar M, Yajid M A M, Yusof N M, et al. Microstructural characterization and corrosion resistance evaluation of nanostructured Al and Al/AlCr coated Mg-Zn-Ce-La alloy[J]. J Alloy Compd, 2014,615(31):657.
65Willbold E, Gu X, Albert D, et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium[J]. Acta Biomater, 2014,11:554.
66Witte F. The history of biodegradable magnesium implants: A review[J]. Acta Biomater, 2010,6(5):1680.
67Liang C, Wang S, Huang N, et al. Effects of lanthanum and cerium mixed rare earth metal on abrasion and corrosion resistance of AM60 magnesium alloy[J]. Rare Met Mater Eng, 2015,44(3):521.
68Bi G L, Li Y D, Huang X F, et al. Effects of Zn addition on microstructure and mechanical properties of as-cast Mg-Dy alloy[J]. Chin J Nonferr Met, 2015,25(4):875(in Chinese).
69Zhang Z, Pan F, Chen X, et al. Research status of effect of rare earth element on microstructure and properties of ZK60 alloy[J]. Hot Work Technol, 2011,40(10):8(in Chinese).
70Bi G, Li Y, Huang X, et al. Deformation behavior of an extruded Mg-Dy-Zn alloy with long period stacking ordered phase[J]. Mater Sci Eng A, 2015,622:52.
71Han J, Chen J, Peng L, et al. Influence of processing parameters on thermal field in Mg-Nd-Zn-Zr alloy during friction stir processing[J]. Mater Des, 2016,94:186.
72Predel B. Mg-Pm (magnesium-promethium)[M]∥ Li-Mg-Nd-Zr. Berlin: Heidelberg Springer, 1997:1.
73Tselfes W, Papastaikoudis C, Papathanasopoulos K, et al. Phonon resistivity in Mg-Yb alloys[J]. Phys Rev B, 1981,24(24):3239.
74Tekumalla S, Seetharaman S, Almajid A, et al. Mechanical properties of magnesium-rare earth alloy systems: A review[J]. Metals, 2014,5(1):1.
75Mordike B L, Stulíková I, Smola B. Mechanisms of creep deformation in Mg-Sc-based alloys[J]. Metall Mater Trans A, 2005,36(7):1729.
76Fan C. Effect of rare earth in magnesium and magnesium alloys[J]. Mater Rev, 2005,32(7):17(in Chinese).
77Zhou T, Xia H, Yang M, et al. Investigation on microstructure characterizations and phase compositions of rapidly solidification/powder metallurgy Mg-6wt.% Zn-5wt.%Ce-1.5wt.%Ca alloy[J]. J Alloy Compd, 2011, 509(9): 145.
78Li X, Liu C, Al-Samman T. Microstructure and mechanical properties of Mg-2Gd-3Y-0.6Zr alloy upon conventional and hydrostatic extrusion[J]. Mater Lett, 2011,65(11):1726.
79Miyahara Y, Emi N, Neishi K, et al. Microstructures and mechanical properties of mg alloy after severe torsion straining process[J]. Mater Sci Forum, 2006,503:949.
80Nakamura K, Neishi K, Kaneko K, et al. Continuous grain refinement using severe torsion straining process[J]. Mater Sci Forum, 2006, 503(2): 385.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[4] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[5] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[6] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[7] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[8] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[9] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[10] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[11] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[12] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[13] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[14] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[15] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed