Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23027-23032    https://doi.org/10.11896/cldb.19120094
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水
王薇1, 刘竟成1,2, 霍旺晨3, 王均1,2, 王芊卉1
1 重庆科技学院石油与天然气工程学院,重庆 401331
2 复杂油气田勘探开发重庆市重点实验室,重庆 401331
3 重庆大学材料与工程学院,重庆 400044
Adsorption-Photocatalytic Degradation of Oilfield Wastewater by C-doped Diatomite@TiO2 Catalyst
WANG Wei1, LIU Jingcheng1,2, HUO Wangchen3, WANG Jun1,2, WANG Qianhui1
1 School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
2 The Key Laboratory of Complex Oil and Gas Field Exploration and Development of Chongqing Municipality 401331, China
3 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 7065KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅藻土@TiO2复合材料已被证明对液态和气态的有机污染物如染料、甲醛等具有较高的吸附能力、光催化活性和重复使用性,而C掺杂则能够调控TiO2的能带结构并拓展其吸收范围至可见光区域。本研究以四氟化钛为前驱体,采用简单的水热合成法制备了硅藻土@TiO2复合材料,并以葡萄糖为碳源,通过焙烧的方法得到C掺杂硅藻土@TiO2光催化剂,探索了C掺杂纳米硅藻土@TiO2在可见光下对油田废水中有机污染物的去除效果。研究表明,C的掺杂并未使硅藻土@TiO2的形貌发生改变,产物保持了丰富的孔隙结构,TiO2颗粒较为均匀地负载在硅藻土上;同时,紫外-可见光谱证实了C掺杂使得材料的禁带宽度明显减小。根据吸附-光催化测试结果,C掺杂量为20%、焙烧时间为3 h的光催化剂样品,在吸附20 min+光照射75 min后可使油田废水的COD降低82.59%,其去除污染物效果显著优于纯硅藻土@TiO2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王薇
刘竟成
霍旺晨
王均
王芊卉
关键词:  碳掺杂  纳米硅藻土@TiO2  吸附  可见光催化  油田废水  化学需氧量(COD)  带隙调控    
Abstract: Diatomite/TiO2 composites have been proven by sufficient works to have high adsorption capacity and high photocatalytic activity for organic pollutants, e.g. dyes and formaldehyde, as well as good reusability. And carbon doping can help to adjust the band structure of TiO2, and consequently, to extend the absorbing range of TiO2 to the visible light region. In this work, by using titanium tetrafluoride as precursor and appl-ying a simple hydrothermal synthesis method, diatomite@TiO2 composites were prepared, and into which, by using glucose as C source, carbon was then doped so as to prepare C-diatomite@TiO2 photocatalysts via the calcination method. The characterization of the resulted C-diatomite@TiO2 and the COD removal experiment (under visible light irradiation) for oilfield wastewater were carried out, obtaining some useful and satisfactory results. The morphology of C-diatomite@TiO2 changes very little after C doping (compared with diatomite@TiO2), as the porous structure is well retained and TiO2 particles are uniformly distributed on diatomite. UV-vis spectroscopy confirmed the significant reduction of the band gap induced by C doping. Moreover, according to the experiment of 20 min adsorption plus 75 min visible-light-photocatalyzed degradation, the COD of oilfield wastewater can be decreased by 82.59% under the presence of the photocatalyst sample with a carbon doping amount of 20% and a calcination time of 3 hours. This removal efficiency of organic compounds is much higher than that of pure diatomite@TiO2.
Key words:  carbon doping    nano-diatomite@TiO2    adsorption    visible-light photocatalysis    oilfield wastewater    chemical oxygen demand (COD)    band gap adjusting
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  O649.4  
基金资助: 国家安全监管总局2016年安全生产重大事故防治关键技术科技项目(chongqing-0006-2016AQ);2018年重庆科技学院研究生科技创新计划项目(YKJCX1820109)
通讯作者:  liujingcheng1980@126.com   
作者简介:  王薇,2018年6月获得学士学位,随后进入重庆科技学院石油与天然气工程学院攻读硕士研究生学位,在刘竟成教授的指导下进行研究。目前主要的研究领域为纳米材料的制备和光催化处理油气废水。
刘竟成,重庆科技学院副教授、硕士研究生导师。本科和硕士分别于2004年、2008年毕业于西南石油大学,2012年博士毕业于重庆大学安全技术及工程专业,获得工学博士学位。主要从事油气田开发工程领域研究,主要研究油气开采理论与技术及应用。在国内外重要期刊发表文章20多篇,申报国家发明专利6项。
引用本文:    
王薇, 刘竟成, 霍旺晨, 王均, 王芊卉. C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水[J]. 材料导报, 2020, 34(23): 23027-23032.
WANG Wei, LIU Jingcheng, HUO Wangchen, WANG Jun, WANG Qianhui. Adsorption-Photocatalytic Degradation of Oilfield Wastewater by C-doped Diatomite@TiO2 Catalyst. Materials Reports, 2020, 34(23): 23027-23032.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120094  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23027
1 Jamaly S, Giwa A, Hasan S W. Journal of Environmental Sciences,2015,37,15.
2 Leshuk T, Wong T, Linley S, et al. Chemosphere,2016,144,1854.
3 King S M, Leaf P A, Olson A C, et al. Chemosphere,2014,95,415.
4 Padaki M, Surya Murali R, Abdullah M S, et al. Desalination,2015,357,197.
5 Huang W Z, Long C, Ke S Z, et al. Industrial Water Treatment,2007,27(8),4(in Chinese).
黄文章,龙川,柯水洲,等.工业水处理,2007,27(8),4.
6 Li C M, Yu S Y, Zhang X X, et al. Journal of Colloid and Interface Science,2019,538,462.
7 Cheng C K, Deraman M R, Ng K H, et al. Journal of Cleaner Production,2016,112,1128.
8 Zaleska A. Recent Patents on Engineering,2008,2,157.
9 Kabiri S, Tran D N H, Azari S, et al. ACS Applied Materials & Interfaces,2015,7(22),11815.
10 Weatherspoon M R, Dickerson M B, Wang G, et al. Angewandte Chemie International Edition,2007,46(30),5724.
11 Wang B, Zhang G, Sun Z, et al. Powder Technology,2014,262,1.
12 Zhang G X, Sun Z M, Duan Y W, et al. Applied Surface Science,2017,412,105.
13 Ren W J, Ai Z H, Jia F L, et al. Applied Catalysis B: Environmental,2007,69(3-4),138.
14 Sakthivel S, Kisch H. Angewandte Chemie International Edition,2003,42(40),4908.
15 Guo X L, Kuang M, Li F, et al. Electrochimica Acta,2016,190,159.
16 Chen Y, Liu K R. Journal of Hazardous Materials,2017,324,139.
17 Sun Q, Hu X L, Zheng S L, et al. Environmental Pollution,2019,245,53.
18 Zou Y J, Shi J W, Ma D, et al. Chemical Engineering Journal,2017,322,435.
19 Varnagiris S, Medvids A, Lelis M, et al. Journal of Photochemistry and Photobiology A: Chemistry,2019,382,111941.
20 Wang X, Meng S, Zhang X, et al. Chemical Physics Letters,2007,444(4-6),292.
21 Chen Y, Liu K R. Powder Technology,2016,303,176.
22 Gao L, Wang L B, Yang L, et al. Applied Surface Science,2019,484,628.
23 Liu G L, Han C, Pelaez M, et al. Nanotechnology,2012,23(29),294003.
24 Wang X J, Wang J Y, Zhang J, et al. Journal of Photochemistry and Photobiology A: Chemistry,2017,347,105.
25 Liu X F, He Y G, Yang B B, et al. Catalysts,2020,10(4),380.
26 Pang L Y, Wang S T, Zhang L H, et al. Bulletin of the Chinese Ceramic Society,2015,34(8),2260(in Chinese).
潘璐阳,王树涛,张兰河,等.硅酸盐通报,2015,34(8),2260.
27 Zielińska-Jurek A, Bielan Z, Wysocka I, et al. Journal of Environmental Management,2017,195,157.
28 Ghasemi Z, Younesi H, Zinatizadeh A A. Chemosphere,2016,159,552.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[3] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[4] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[5] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[6] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[7] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[8] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[9] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[10] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[11] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[12] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[13] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[14] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
[15] 俞坤, 刘金香, 谢水波, 刘迎九, 葛玉杰. 聚吡咯/石墨相氮化碳复合材料吸附铀(Ⅵ)的性能与机制[J]. 材料导报, 2020, 34(23): 23020-23026.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed