Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5067-5074    https://doi.org/10.11896/cldb.20040194
  无机非金属及其复合材料 |
卤氧化铋光催化剂改性及应用研究进展
龙泽清1,2, 宋慧3, 张光明2
1 中国人民大学环境学院,北京 100872
2 河北工业大学能源与环境工程学院,天津 300130
3 山西航天清华装备有限责任公司,长治 046012
Research Progress in Modification and Application of Bismuth Oxyhalide Photocatalyst
LONG Zeqing1,2, SONG Hui3, ZHANG Guangming2
1 School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
2 School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
3 Shanxi Aerospace Qinghua Equipment Co., Ltd., Changzhi 046012, China
下载:  全 文 ( PDF ) ( 4083KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 层状卤氧化铋(BiOX,X=Cl、Br和I)作为一类有潜力的光催化剂,受到能源和环境领域研究者的广泛关注。为了进一步提高BiOX的光催化活性,扩展其光吸收范围和降低光生电子空穴对的复合率势在必行。本文讨论了离子掺杂、形貌调控、晶面调控、缺陷调控、异质结构建和金属等离激元共振等各种改善BiOX光催化性能的策略;概括了BiOX在光催化领域的潜在应用,并给出了未来的发展趋势及所面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙泽清
宋慧
张光明
关键词:  卤氧化铋  改性  光催化性能  光催化的应用    
Abstract: As a photocatalyst with promising intrinsic characteristics, layered bismuth oxyhalide (BiOX, X=Cl, Br, and I) has attracted extensive attention from researchers in energy and environmental fields. Research efforts on improving the photocatalytic activity of BiOX mainly aim at expanding its light absorption range, and reducing the recombination rate of photogenerated electron hole pairs. In this review, the authors discussed various strategies to improve the photocatalytic performance of BiOX, such as ion doping, morphology control, crystal face control, defect control, heterostructure construction and metal plasmon resonance. The paper also provides a summary of the application of BiOX as photocatalyst, and ends with a brief discussion on the future development trend and potential challenges.
Key words:  bismuth oxyhalide    modification    photocatalytic performance    photocatalytic application
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TB33  
  TB34  
基金资助: 国家水体污染控制与治理科技重大专项(2018ZX07110003)
通讯作者:  zgm@ruc.edu.cn   
作者简介:  龙泽清,2016年6月毕业于中北大学,获得工学硕士学位。现为中国人民大学环境学院博士研究生,在张光明教授的指导下进行研究。目前主要研究领域为新型环境功能材料。
张光明,河北工业大学能环学院教授、博士研究生导师,新世纪优秀人才入选。2001年美国普度大学环境工程博士毕业,研究方向为水处理与资源化技术。近年来,出版著作7部,发表论文180余篇,包括Chemical Engineering Journal、Water Research、Journal of Hazardous Materials、Bioresource Technology等。
引用本文:    
龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
LONG Zeqing, SONG Hui, ZHANG Guangming. Research Progress in Modification and Application of Bismuth Oxyhalide Photocatalyst. Materials Reports, 2021, 35(5): 5067-5074.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040194  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5067
1 Zhang H, Chen G, Bahnemann D W. Journal of Materials Chemistry,2009,19,5089.
2 Alam K M, Kumar P, Kar P, et al. Nanoscale Advances,2019,1,1460.
3 Zhang L, Wang W, Jiang D, et al. Nanoscale Advances,2015,8,821.
4 Zhu L, He C, Huang Y. et al. Separation and Purification Technology,2012,91,59.
5 Shi B, Yin H, Li T, et al. Materials Technology,2017,32,415.
6 Tong H, Ouyang S, Bi Y, et al. Advanced Materials,2012,24,229.
7 He R, Cao S, Zhou P, et al. Chinese Journal of Catalysis,2014,35,989.
8 Long Z, Xian G, Zhang G M, et al. Chinese Journal of Catalysis,2020,41,464.
9 Zhang X, Ai Z, Jia F, et al. Journal of Physical Chemistry C,2008,112,3,747.
10 Cheng H, Huang B, Dai Y. Nanoscale,2014,6,2009.
11 Yang Y, Zhang C, Lai C, et al. Advances in Colloid and Interface Science,2018,254,76.
12 Li H, Yang Z, Zhang J, et al. Applied Surface Science,2017,423,1188.
13 Dai W W, Zhao Z Y. Materials Chemistry and Physics,2017,193,164.
14 Huang H, Zeng C, Xiao K, et al. Journal of Colloid and Interface Science,2017,504,257.
15 Long Z, Zhang G M, Wei T, et al. Journal of Industrial and Engineering Chemistry,2020,84,322.
16 Sharma K, Dutta V, Sharma S, et al. Journal of Industrial and Enginee-ring Chemistry,2019,78,1.
17 Singh S, Sharma R, Khanuja M. Korean Journal of Chemical Enginee-ring,2018,35,1955.
18 Di J, Xia J, Li H, et al. Nano Energy,2017,41,172.
19 Zhao L, Zhang X, Fan C, et al. Physica B,2012,407,3364.
20 Meng X, Zhang Z. Journal of Molecular Catalysis A: Chemical,2016,423,533.
21 Zhang L, Wang W, Sun S, et al. Applied Catalysis B: Environmental,2013,132-133,315.
22 Liu Z, Wu B, Zhao Y, et al. Ceramics International,2014,40,5597.
23 Mi Y, Wen L, Wang Z, et al. Nano Energy,2016,30,109.
24 Jiang Z, Liu Y, Jing T, et al. RSC Advances,2015,5,47261.
25 Long Z Q, Li Q G, Wei T, G. et al. Journal of Hazardous Materials,2020,395,122599.
26 Huang C, Hu J, Cong S, et al. Applied Catalysis B: Environmental,2015,174-175,105.
27 Guo J, Liao X, Lee M H, et al. Applied Catalysis B: Environmental,2019,243,502.
28 Tu X, Qian S, Chen L, et al. Journal of Materials Science,2015,50,4312.
29 Li J, Zhao K, Yu Y, et al. A dvanced Functional Materials,2015,25,2189.
30 Jiang G, Li X, Wei Z, et al. Powder Technol.,2014,260,84.
31 Wu D, Yue S, Wang W, et al. Applied Catalysis B: Environmental,2016,192,35.
32 Zhang X, Zhang L. Journal of Physical Chemistry C,2010,114,18198.
33 Wu Y, Yuan B, Li M, et al. Chemical Science,2015,6,1873.
34 Fan W, Li H, Zhao F, et al. Chemical Communications.,2016,52,5316.
35 Shan L W, He L Q, Suriyaprakash J, et al. Journal of Alloys and Compounds,2016,665,158.
36 Li H, Shi J, Zhao K, et al. Nanoscale,2014,6,14168.
37 Zhang L, Wang W, Sun S, et al. Applied Catalysis B: Environmental,2015,162,470.
38 Tian Y, Guo C F, Guo Y, et al. Applied Surface Science,2012,258,1949.
39 Zhao Y, Tan X, Yu T, et al. Materials Letters,2015,164,243.
40 Li H, Li J, Ai Z H, et al. Angewante Chemie International Edition,2018,57,122.
41 Li H, Zhang L. Current Opinion in Green and Sustainable Chemistry Photocatalytic,2017,6,48.
42 Shan L W, He L Q, Suriyaprakash J, et al. Journal of Alloys and Compounds,2016,665,158.
43 Ye L, Deng K, Xu F, et al. Physical Chemistry Chemical Physics,2012,14,82.
44 Ye L, Zan L, Tian L, et al. Chemical Communications,2011,47,6951.
45 Cui P, Wang J, Wang Z, et al. Nano Research,2016,9,593.
46 Ning S, Ding L, Lin Z, et al. Applied Catalysis B: Environmental,2016,185,203.
47 Shi L, Ma J, Yao L, et al. Journal of Colloid and Interface Science,2018,519,1.
48 Shang J, Hao W, Lv X, et al. ACS Catalysis,2014,4,954.
49 Wang H, Zhang L, Chen Z, et al. Chemical Society Reviews,2014,43,5234.
50 Cao J, Xu B, Lin H, et al. Chemical Engineering Journal,2013,228,482.
51 Zhong Y, Liu Y, Wu S, et al. Frontiers in Chemistry,2018,6,1.
52 Tian N, Huang H, Wang S, et al. Applied Catalysis B: Environmental,2020,267,118697.
53 Kong X Y, Lee W Q, Mohamed A R, et al. Chemical Engineering Journal,2019,372,1183.
54 Wen X J, Niu C. G, Zhang L, et al. Dalton Transactions,2017,46,4982.
55 Liu J, Ruan L, Hu J, et al. Micro/Nano Materials, Devices, and Systems,2013,8923,892338.
56 Cao J, Li X, Lin H, et al. Journal of Hazardous Materials,2012,239-240,316.
57 Zhang J, Zhang L, Shen X, et al. CrystEngComm,2016,18,3856.
58 Duo F, Wang Y, Mao X, et al. Crystal Research and Technology,2014,49,721.
59 Wu Z, Liu J, Tian Q, et al. ACS Sustainable Chemistry & Engineering,2017,5,5008.
60 Hu J, Li X, Wang X, et al. Dalton Transactions,2019,48,8937.
61 Zhao C, Liang Y, Li W, et al. Journal of Materials Science: Materials in Electronics,2020,31,1868.
62 Yosefi L, Haghighi M. Ceramics International,2019,45,8248.
63 Lin H P, Lee W W, Huang S T, et al. Journal of Molecular Catalysis A: Chemical,2016,417,168.
64 Cao J, Xu B, Luo B, et al. Catalysis Communications,2011,13,63.
65 Yosefi L, Haghighi M. Applied Catalysis B: Environmental,2018,220,367.
66 Faraday M. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1857,14,512.
67 Ghosh S K, Pal T. Chemical Reviews,2007,107,4797.
68 Wang M Y, Ye M D, Locozzia J, et al. Advanced Science,2016,3,1600024.
69 Kumar Reddy P, Laxma Reddy P, Kwon E, et al. Environment International,2016,91,94.
70 Tang Y, Sun H, Shang Y, et al. Journal of Colloid and Interface Science,2019,535,516.
71 Kang S, Pawar R C, Lee C S. Journal of Experimental Nanoscience,2016,11,853.
72 Guo W, Qin Q, Geng L, et al. Journal of Hazardous Materials,2016,308,374.
73 Dong F, Xiong T, Yan S, et al. Journal of Catalysis,2016,344,401.
74 Sun M, Zhang W, Sun Y, et al. Chinese Journal of Catalysis,2019,40,826.
75 Ahmed S, Rasul M G, Martens W N, et al. Desalination,2010,261,3.
76 Jiang R, Wu D, Lu G, et al. Journal of the Taiwan Institute of Chemical Engineers,2019,96,681.
77 Jiang R, Lu G, Yan Z, et al. Chemical Engineering Journal,2019,374,79.
78 Che H, Che G, Dong H, et al. Applied Surface Science,2018,455,705.
79 Su T, Shao Q, Qin Z, et al. ACS Catalysis,2018,8,2253.
80 Fan W Q, Yu X Q, Song S Y, et al. CrystEngComm,2014,16,820.
81 Li Z, Zhang H, Wang L, et al. Journal of Photochemistry and Photobiology A-Chemistry,2020,386,112099.
82 Dong F, Sun Y, Fu M, et al. Journal of Hazardous Materials,2012,219-220,26.
83 Shi X, Wang P, Li W, et al. Applied Catalysis B: Environmental,2019,243,322.
84 Gong S, Zhu G, Bello I A, et al. Journal of Chemical Technology & Biotechnology, DOI:10.1002/jctb.6368.
85 Jin J, Wang Y, He T. RSC Advances,2015,5,100244.
86 Wang J C, Yao H C, Fan Z Y, et al. ACS Applied Materials & Interfaces,2016,8,3765.
87 Shi Y, Xiong X, Ding S, et al. Applied Catalysis B: Environmental,2018,220,570.
88 Wang Y, Lin L, Li B B, et al. Biotechnology Bulletin,2016,32(8),242(in Chinese).
王亚,林立,李贝贝,等.生物技术通报,2016,32(8),242.
[1] 周志刚, 陈功鸿, 张红波, 凌永毅. 橡胶粉/SBS与高黏剂复合改性沥青的制备及性能研究[J]. 材料导报, 2021, 35(6): 6093-6099.
[2] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[3] 孙振宇, 张源, 左迎峰, 吴义强, 王张恒, 吕建雄. 有机-无机复合改性速生木材研究现状与展望[J]. 材料导报, 2021, 35(5): 5181-5187.
[4] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[5] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[6] 徐群娜, 白忠薛, 马建中. 玉米醇溶蛋白的化学改性及应用研究进展[J]. 材料导报, 2021, 35(3): 3194-3203.
[7] 张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
[8] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[9] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[10] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[11] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[12] 卢家成, 刘嘉良, 李威翰, 李飞. 生土建筑与材料研究现状[J]. 材料导报, 2020, 34(Z2): 269-272.
[13] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[14] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[15] 张通姗, 徐海萍, 徐世豪, 廖杨科, 熊维. 废弃高抗冲聚苯乙烯高值化再利用的研究进展[J]. 材料导报, 2020, 34(Z1): 557-562.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed