Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5181-5187    https://doi.org/10.11896/cldb.19120224
  高分子与聚合物基复合材料 |
有机-无机复合改性速生木材研究现状与展望
孙振宇1, 张源1, 左迎峰1, 吴义强1, 王张恒1, 吕建雄1,2
1 中南林业科技大学材料科学与工程学院,长沙 410004
2 中国林业科学研究院木材工业研究所,北京 100091
Research Status and Prospect of Organic-Inorganic Compound Modified Fast-growing Wood
SUN Zhenyu1, ZHANG Yuan1, ZUO Yingfeng1, WU Yiqiang1, WANG Zhangheng1, LYU Jianxiong1,2
1 College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
2 Research Institute of Wood Industry, Chinese Academy of Forest, Beijing 100091, China
下载:  全 文 ( PDF ) ( 3199KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 木材作为一种天然可再生资源被广泛应用于各个领域。近年来,随着我国对木材需求的日益增长和天然林资源的匮乏,速生木材作为硬质木材的替代品越来越受到人们的关注。但速生木材存在密度低、材质疏松、力学性能欠佳等不足,难以用于制造高附加值产品,因此需要对其进行改性增强处理。速生木材具有大量的孔隙和活性官能团,通过浸渍改性不仅可提高其密度和力学强度,还能赋予速生木材新的功能,进而提升其使用价值。
传统的浸渍改性按照浸渍液的不同主要分为有机和无机两种方式,但均存在一些不足。有机改性液浸渍中所使用的有机树脂虽能与木材的活性官能团发生交联而形成紧密的结构,但是大多有机树脂含有游离甲醛等易挥发的有毒物质,会对环境和人体健康造成危害。而无机改性剂虽无毒环保,但大多难以在木材中形成稳定的结构,易发生流失与吸湿等现象,影响使用功能。
有机-无机复合改性是一种新型的材料复合技术,它能将有机材料与无机材料的优点结合起来,在减少有机树脂用量的同时充分利用其包覆作用(或键结合)来固定无机改性剂以减少流失,并且有机树脂能与木材形成稳定的键结合。因此,在有机-无机材料的协同作用下,改性木材的性能得以大幅度提升,实用价值和应用领域得到进一步扩展。
本文以有机-无机复合改性速生木材的研究现状为主题,以硅系、硼系、铜、钙及蒙脱土等无机组分为主线,对其研究进展进行详细描述,并对改性机理进行归纳总结。同时,从基础理论、制备工艺、基本性能以及经济成本等方面提出了有机-无机复合改性木材的发展趋势,旨在推动有机-无机复合改性方法能在速生木材的改性中得到更广泛的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙振宇
张源
左迎峰
吴义强
王张恒
吕建雄
关键词:  速生木材  有机-无机复合改性  改性机制    
Abstract: Wood as a natural renewable resource is widely used in various fields. In recent years, with the increasing demand for wood and the shortage of natural forest resources, fast-growing wood as a substitute for hard wood has attracted more and more attention. However, due to its shortcomings such as low density, loose texture and poor mechanical properties, which is difficult to be used in high value-added products, so it needs to be modified and reinforce to increase the basic performance. Based on the large number of pores and active functional groups of fast-growing wood, the impregnation modification can not only improve the density and mechanical strength, but also add the new functions, so as to enhance the use value.
According to the difference of impregnating liquid, traditional impregnation can be divided into organic and inorganic methods, but both of them have some shortcomings. The organic resin used in organic modified liquid impregnation can occur a cross-linking with the active functional groups of wood to form a compact structure, but most of the organic resin contains volatile toxic substances such as free formaldehyde, which will cause harm to the environment and human health. Although inorganic modifier is non-toxic and environment-friendly, most of them are difficult to form a stable structure in the wood, easy to occur the phenomenon of loss and moisture absorption, which affects the use function.
Organic-inorganic composite modification is a new material composite technology, which combines the advantages of organic and inorganic materials. While reducing the amount of organic resin, the covering action (or bonding) of the organic resin was used to fix the inorganic modifier to reduce the loss. In addition, the organic resin can form a stable bond with the wood. Therefore, under the synergetic effects of organic and inorganic materials, the properties of the modified wood can be greatly improved, and the practical value and application fields can be expanded.
In this paper, the research status of organic-inorganic compound modification fast-growing wood is taken as the theme, and the inorganic components such as silicon, boron, copper, calcium and montmorillonite are used as the main line, the research progress is described in detail, and the modification mechanism is also summarized. Meanwhile, the development trend is put forward from the aspects of basic theories, preparation technologies, basic properties and economic costs, and the aim is to promote the application of organic-inorganic compound ways in the modification of fast-growing wood.
Key words:  fast-growing wood    organic-inorganic compound modification    modification mechanism
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  S781.7  
基金资助: 国家自然科学基金面上项目(31770606);湖湘青年英才计划(2019RS2040);湖南省科技重大专项(2017NK1010);湖南省科技创新平台与人才计划(2018WK4028);湖南省研究生科研创新项目(CX20190600);中南林业科技大学研究生科技创新项目(CX20202020)
通讯作者:  zuoyf1986@163.com; jianxiong@caf.ac.cn   
作者简介:  孙振宇,2019年毕业于湖南工程学院,获得工学学士学位。现为中南林业科技大学材料科学与工程学院硕士研究生。主要从事木材功能性改良的研究。
左迎峰,中南林业科技大学,副教授。2014年毕业于东北林业大学,获工学博士学位。同年加入中南林业科技大学材料科学与工程学院工作,主要从事生物质复合材料及胶黏剂改性的研究。
吕建雄,中南林业科技大学湖南省“芙蓉学者”特聘教授,国家杰出青年科学基金获得者。主要从事木材物理与干燥、木材保护与改性的研究。
引用本文:    
孙振宇, 张源, 左迎峰, 吴义强, 王张恒, 吕建雄. 有机-无机复合改性速生木材研究现状与展望[J]. 材料导报, 2021, 35(5): 5181-5187.
SUN Zhenyu, ZHANG Yuan, ZUO Yingfeng, WU Yiqiang, WANG Zhangheng, LYU Jianxiong. Research Status and Prospect of Organic-Inorganic Compound Modified Fast-growing Wood. Materials Reports, 2021, 35(5): 5181-5187.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120224  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5181
1 National Forestry and Grassland Administration. China forest resources report(2014-2018), China,2019(in Chinese).
国家林业和草原局.中国森林资源报告(2014-2018),2019.
2 Lang Q. Research on properties and mechanism of fast-growingpoplar and ailanthus treated by multi-functional modifier. Ph.D. Thesis, Beijing Forestry University,China,2016(in Chinese).
郎倩.复合改性剂对速生杨木和椿木改性效应及机理研究.博士学位论文,北京林业大学,2016.
3 Huang Y,Li G. Wood Science and Technology,2019,53,1051.
4 Dong Y M, Yan Y T, Zhang Y, et al. Wood Science and Technology,2016,50(3),503.
5 Gong M X, Cheng R X, Song Y T, et al. Forest Engineering,2013,29(1),65(in Chinese).
龚明星,程瑞香,宋羿彤,等.森林工程,2013,29(1),65.
6 Li Y F. Study of wood-organic-inorganic hybrid nanocomposites. Ph.D. Thesis, Northeast Forestry University, China,2012(in Chinese).
李永峰.木材-有机-无机杂化纳米复合材料研究.博士学位论文,东北林业大学,2012.
7 Rahman M R, Hamdan S. Wood Polymer Nanocomposites, Engineering Materials,2018,6,37.
8 Li M L, Li N L, Shan J C, et al. China Wood-Based Panels,2019,26(5),1.
李美玲,李南,单家成,等.中国人造板,2019,26(5),1.
9 Dong Y M, Zhang S F, Li J Z. Journal of Forestry Engineering,2017,2(4),34(in Chinese).
董友明,张世锋,李建章.林业工程学报,2017,2(4),34.
10 Wang Z, Wang X M. Scientia SilvaeSinicae,2014,50(10),123(in Chinese).
王哲,王喜明.林业科学,2014,50(10),123.
11 Jang E S, Kang C W. Journal of Wood Science,2019,65(1),1.
12 Zhou Y, Li P, Zuo Y F, et al. Maerials Report A: Review Papers,2019,33(9),2989(in Chinese).
周亚,李萍,左迎峰,等.材料导报:综述篇,2019,33(9),2989.
13 Ding Z, Li H, Wei J. Materials Science and Engineering: C,2018,87(1),104.
14 Samir E H, Mosto B, Abdelkrim E K. Progress in Materials Science,2019,106(12),100579.
15 Papadopoulos A N, Bikiaris D N, Mitropoulos A C. Nanomaterials,2019,9(4),607.
16 Hadi A, Omid S. The European Physical Journal Plus,2019,134,459.
17 Abdurrahman K, Mehmet N Y, Sekip S Y. Turkish Journal of Forestry,2019,20(1),50.
18 Wang Q, Guo H X,Li Y Q, et al. Chemical Research and Application,2006,18(8),939(in Chinese).
王群,郭红霞,李永卿,等.化学研究与应用,2006,18(8),939.
19 Yan Y T,Dong Y M,Li J Z,et al. RSC Advances,2015,5(67),54148.
20 Wang Z H. Research and application of hydrophobic wood for bathroomfurniture. Master’s Thesis,Central South University of Forestry and Technology, China,201(in Chinese).
王张恒.面向卫浴家具的疏水木材研究.硕士学位论文,中南林业科技大学,2019.
21 Wang J X. Journal of Liaoning Forestry Science & Technology,2017(2),1(in Chinese).
王敬贤.辽宁林业科技,2017(2),1.
22 Dong Y M, Yan Y T, Zhang S F, et al. European Journal of Wood and Wood Products,2015,73(4),457.
23 Shi Y, Liu J L, Lv W H, et al. China Wood Industry,2019,33(1),21(in Chinese).
石媛,刘君良,吕文华,等.木材工业,2019,33(1),21.
24 Chou H B. Study on in-situ enhancement of plantation poplar wood with water soluble monomers. Ph.D. Thesis, Chinese Academy Forestry, China,2018(in Chinese).
仇洪波.水溶性单体原位增强速生杨木及其机制研究.博士学位论文,中国林业科学研究院,2018.
25 Xu J J. Study on combustion properties of themromoset resins and silica sols modified wood. Master’s Thesis, Northeast Forestry University, China,2016(in Chinese).
徐杰杰.热固性树脂和硅溶胶处理木材的燃烧性能研究.硕士学位论文,东北林业大学,2016.
26 Sun K, Xu Z H, Zhang H, et al. Journal of Green Science and Technology,2019(12),224(in Chinese).
孙珂,徐子涵,张贺,等.绿色科技,2019(12),224.
27 He S, Wu W, Zhang M. Journal of Thermal Analysis and Calorimetry,2011,11,825.
28 Zhang Y J, Lin L Y, Fu F. China Wood Industry,2015,29(4),36(in Chinese).
张彦娟,林兰英,傅峰.木材工业,2015,29(4),36.
29 Tan H F, Guo H X, Du W L, et al. China Wood Industry,2009,23(4),40(in Chinese).
谭惠芬,郭红霞,杜万里,等.木材工业,2009,23(4),40.
30 Sun Z Q. Ceramic Wood Prepared by silica sol/styr-ene-acrylic emulsion system. Master’s Thesis,Beijing University of Technology,China,2004(in Chinese).
孙正强.硅溶胶/苯丙乳液改性体系的陶瓷复合木材.硕士学位论文,北京工业大学,2004.
31 Wang W. Fast-growing poplar wood modified with silica sol/VAE. Master’s Thesis,Central South University of Forestry and Technology, China,2014(in Chinese).
王薇.硅溶胶-VAE改性速生杨木的研究.硕士学位论文,中南林业科技大学,2014.
32 Wang F Q, Sui F, Liao H, et al. Fire Science and Technology,2014,6,688(in Chinese).
王奉强,隋芳,廖恒,等.消防科学与技术,2014,6,688.
33 Wang F, Chai Y B, Liu J L. Wood Processing Machinery,2016,27(4),33(in Chinese).
王飞,柴宇博,刘君良.木材加工机械,2016,27(4),33.
34 Xu C L, Guo H X,Lin L Y, et al. Chemical Research and Application,2010,22(2),240(in Chinese).
徐春利,郭红霞,林兰英,等.化学研究与应用,2010,22(2),240.
35 Chen H Y, Lang Q, Bi Z, et al. Holzforschung,2014,4,1.
36 Nguyen T T, Xiao Z, Che W, et al. Journal of Wood Science,2019,65,2.
37 MihaelaP, Alexander P. Fire and Materials,2019,10,1.
38 Yu L P. Selection of anti-leaching boron-based preservative formulas and properties of wood treated with optimized formulas. Ph.D. Thesis, Beijing Forestry University, China,2009(in Chinese).
余丽萍.抗流失硼基木材防腐剂配方遴选及优选配方处理材的性能.博士学位论文,北京林业大学,2009.
39 Chai Y B, Liu J L, Sun B L, et al. China Wood Industry,2015,29(3),5(in Chinese).
柴宇博,刘君良,孙柏玲,等.木材工业,2015,29(3),5.
40 Chai Y B, Liu J L, Zhen X. Advanced Materials Research,2011,341,80.
41 Wang F, Liu J L,Lv W H. Fire and Materials,2017,41(8),1051.
42 Wang F. Properties and mechanism of Chinese fir modified by phenol melamine urea formaldehyde resin and borates. Ph.D. Thesis, Chinese Academy of Forestry, China,2018(in Chinese).
王飞.PMUF树脂复配硼化物改性杉木及其机理研究.博士学位论文,中国林业科学研究院,2018.
43 Yue K, Chen Z J, Construction and Building Materials,2017,154,956.
44 Yue K, Wu G H, Xu L Q, et al. Construction and Building Materials,2020,241,118101.
45 Jiang H, Kamdem D. Wood Science and Technology,2007,41(8),637.
46 Dong W R, Xu M. Journal of Forestry Engineering,2019,4(1),39(in Chinese).
东婉茹,许民.林业工程学报,2019,4(1),39.
47 Peng Y, Ma K, Long G, et al. Materials,2019,12,5298.
48 Zhang N N. The structural characterization and mechanism analysis of nanoCaCO3/common Chinese fir composites. Master’s Thesis,Central South University of Forestry and Technology, China,2012(in Chinese).
张南南.杉木-纳米碳酸钙复合材料结构表征及机理分析.硕士学位论文,中南林业科技大学,2012.
49 Jia Z. The study of nano-CaCO3/fast-growing poplar composite and preparing building templates. Ph.D. Thesis, Northeast Forestry University, China,2012(in Chinese).
贾贞.纳米碳酸钙/速生杨木复合材料及制作建筑模板的研究.博士学位论文,东北林业大学,2012.
50 ChenG Z, Gao Z X, Ma H, et al. Journal of Northeast Forestry University,2013,41(4),108(in Chinese).
陈公哲,高正鑫,马骅,等.东北林业大学学报,2013,41(4),108.
51 Jiang J, Mei C, Pan M, et al. PolyerComposits,2019,10,1.
52 Moya R, Rodríguez Z A, Vega B, et al. International Journal of Adhesion & Adhesives,2015,59,62.
53 Antonios N P, Dimitrios N B, Athanasios C M. Nanomaterials,2019,9,607.
54 Hong X H,Cao J Z,Luo G Q. Chemistry and Industry of Forest Products,2011,31(1),41(in Chinese).
姜卸宏,曹金珍,罗冠群.林产化学与工业,2011,31(1),41.
55 Zhang J, Zhu C X, Wang K H. China Wood-Based Panels,2010,9,16(in Chinese).
张建,朱长庆,汪奎宏.中国人造板,2010,9,16.
56 Yu X C, Sun D L, Li X S. The Japan Wood Research Society,2011,57,501.
57 Yu X C, Sun D L, Li X S. Journal of Central South University of Forestry & Technology,2011,31(1),109(in Chinese).
余先纯,孙德林,李湘苏.中南林业大学学报,2011,31(1),109.
58 Yu X C, Li X S, Gong Z W. New Chemical Materials,2011,39(9),125(in Chinese).
余先纯,李湘苏,龚铮午.化工新型材料,2011,39(9),125.
59 Wang W. Properties and characterization of thermally-modifies wood in combination with water repellent treatment. Ph.D. Thesis,Beijing Forestry University, China,2015(in Chinese).
王望.防水剂/高温热处理复合改性木材的性能与表征.博士学位论文,北京林业大学,2015.
[1] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[2] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[3] 周亚, 李萍, 张 源, 袁光明, 王向军, 吴义强, 左迎峰. 基于呼吸浸渍法硅酸钠强化杉木木材工艺优化[J]. 材料导报, 2020, 34(18): 18171-18176.
[4] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[5] 仇洪波, 韩雁明, 范东斌, 李改云, 储富祥. 化学法改良速生木材研究进展[J]. 材料导报, 2018, 32(15): 2701-2708.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed