Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23001-23008    https://doi.org/10.11896/cldb.19080192
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
木质基电化学储能器件的研究进展
张伟业, 刘毅, 郭洪武
北京林业大学材料科学与技术学院,木质材料科学与应用教育部重点实验室,北京 100083
Research Progress of Wood-based Electrochemical Energy Storage Devices
ZHANG Weiye, LIU Yi, GUO Hongwu
Key Laboratory of Wood Science and Technology, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
下载:  全 文 ( PDF ) ( 8548KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着全球能源需求的持续增长,高效的能源存储方式变得尤为关键。电化学储能器件(如超级电容器、锂离子电池等)是一种典型的高效储能系统,其中超级电容器具有功率密度高、循环寿命长等优点;锂离子电池具有能量密度高、无记忆效应、自放电率低等优点。但现有电化学储能器件不可生物降解,对环境有一定的危害。生物质如木材作为光合作用的产物,具有低成本、可再生、绿色环保等优点,采用生物质制备衍生的电化学储能器件越来越受到人们的重视。
电化学储能器件主要由电极材料、电解质及集流体等部件构成,器件的设计组装方式和结构形式是影响其电化学性质的一大关键因素。目前,关于电化学储能器件的制备,例如超级电容器是将碳材料等磨成粉末并加入粘合剂进行和浆制片,粘合剂的加入容易阻塞活性炭孔洞,从而降低其电化学性能,而且活性炭只能作为多孔储能物质,本身无法作为自支撑材料用于制备电极。常规锂电池的制备是将电化学活性材料与导电添加剂和黏结剂溶解在有机溶剂中形成浆料,并将其涂覆在集电器上以形成电极,但在制备过程中会导致电极的破裂以及电化学活性材料从集电器上分离。木材是一种可再生的生物质资源,具有多层级结构,木材经高温炭化处理或者负载电化学活性材料后可作为3D导电基板,独特的开放直通道有利于促进离子传输并提供高表面积,以实现活性材料的有效负载。此外,采用水热法或电化学沉积的方法在炭化木材上负载金属氧化物/氢氧化物、具有高理论电容的导电聚合物,从而制备复合电极材料,并将其用于超级电容器自支撑电极,可使其显示出优异的电化学性能;以木材为基板并负载磷酸铁锂等活性材料制备电极,有效地解决了传统电化学活性材料与基板开裂脱离的问题。
本文归纳了木质基电化学储能器件的研究进展,详细分析了木材在超级电容器、锂离子电池、锂空电池、锂硫电池的应用,着重介绍了木材的孔结构对电化学储能设备的影响,探讨了木质基电化学储能器件面临的问题及今后的发展前景,为制备高性能、环境友好型的木质基电化学储能设备提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张伟业
刘毅
郭洪武
关键词:  天然木材  多层级结构  电化学储能器件  超级电容器  锂离子电池    
Abstract: With the continuous growth of global energy demand, efficient energy storage has become particularly critical. Electrochemical energy storage devices (such as supercapacitors, lithium-ion batteries, etc.) are typical energy storage systems with high energy density, no memory effect and low self-discharge rate. Supercapacitors have the advantages of high power density and long cycle life. However, the existing electrochemical energy storage devices can not be biodegraded, which has a certain harm to the environment. As a product of photosynthesis, biomass, such as wood, has the advantages of low cost, renewable, green and environmental protection. The preparation of electrochemical energy storage devices derived from biomass has attracted increasing attention.
The electrochemical energy storage device is mainly composed of electrodes, electrolytes and fluid collectors. The design, assembly and structure of the device are the key factors affecting its electrochemical properties. At present, the preparation of electrochemical energy storage devices, such as supercapacitors, is to grind carbon materials into powder and add adhesives to make slices. The addition of adhesives can easily block the pore of activated carbon and reduce its electrochemical performance. Activated carbon can only be used as porous energy storage material, and it can’t be used free-standing supercapacitor electrode. Conventional lithium batteries are prepared by dissolving active electrode mate-rials with conductive additives and binders in organic solvents to form slurry coated on collectors to form electrodes. However, during the preparation process, the electrodes will be broken and the electrochemical active materials will be separated from collectors. Wood is a natural renewable biomass resource with the advantages of sustainable utilization and abundant resources. Besides, wood has layered porous structure, excellent mechanical flexibility and integrity. Carbonizing wood at high temperature or loading conductive material is an ideal three-dimensional conductive substrate with unique straightness. Channels facilitate ion transport and provide large specific surfaces for high loading of active materials. Wood carbonization was prepared by hydrothermal or electrochemical deposition of metal oxide/hydroxide loaded conductive polymer with high theoretical capacitance and used as self-supporting electrode of supercapacitor. It has excellent electrochemical properties. In addition, wood was used as substrate and loaded with active electrode materials such as lithium iron phosphate. The preparation of battery-grade electrode material effectively solves the problem of cracking and separation between the traditional electrode active material and the substrate.
In this article, we present the research progress of wood-based energy storage devices, discuss the specific application of wood in supercapacitors, lithium-ion batteries, lithium-air batteries and lithium-sulfur batteries, emphatically introduce the influence of wood micro-structure on electrochemical energy storage equipment, and analyses the problems faced by wood-based electrochemical energy storage equipment and its future development. In order to provide reference for the preparation of wood-based electrochemical energy storage equipment with higher performance and environmental friendliness.
Key words:  natural wood    multilayer structure    electrochemical energy storage devices    supercapacitors    lithium-ion battery
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  S781.7  
基金资助: 北京市自然科学基金(6184045);中央高校基本科研业务费专项资金(2018ZY12)
通讯作者:  liuyi.zhongguo@163.com   
作者简介:  张伟业,2018年6月毕业于曲阜师范大学,获得工学学士学位。现为北京林业大学材料科学与技术学院硕士研究生,在郭洪武教授和刘毅讲师的指导下进行研究。目前主要研究领域为木基先进储能材料与器件。
刘毅,北京林业大学材料科学与技术学院讲师,美国奥本大学访问学者。2009年7月本科毕业于东北林业大学材料科学与工程学院,2015年7月在北京林业大学材料科学与技术学院取得博士学位。主要从事生物质复合材料的研究。主持和参与国家、省部级及横向课题11项,出版专著和教材8部,发表学术论文40余篇,获授权专利5项。
郭洪武,北京林业大学材料科学与技术学院教授,博士研究生导师。1988年7月本科毕业于东北林业大学,2006年在中国林业科学研究院木材工业研究所取得博士学位。主要从事家具与室内装饰工程、生物质复合材料领域的教学、科研与技术转化工作。主持了十三五国家重点研发计划子课题、国家林业局948项目、国家“十一五”科技支撑课题、国家林业公益性行业科研专项、北京市重点实验室共建项目等国家/省部级及校企合作项目。出版专著和教材15部,发表学术论文80余篇,获授权专利9项。
引用本文:    
张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
ZHANG Weiye, LIU Yi, GUO Hongwu. Research Progress of Wood-based Electrochemical Energy Storage Devices. Materials Reports, 2020, 34(23): 23001-23008.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080192  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23001
1 Patrice S, Yury G. Nature Materials,2008,7,845.
2 Yang C X, Gao Q M, Tian W Q, et al. Journal of Materials Chemistry A,2014,2,19975.
3 Qian G Y, Zhu B, Liao X B,et al. Advanced Materials,2018,30,1704947.
4 Weng Z, Su Y, et al. Advanced Energy Materials,2011,1,917.
5 Berglund L A, Burgert I. Advanced Materials,2018,30,1704285.
6 Antonio G P, Bertrand L, Julian M F, et al. ACS Applied Materials Interfaces,2016,8,30890.
7 Chen C J, Hu L B. Accounts of Chemical Research,2018,51,3154.
8 Christina S, Christian K, Pascal O, et al. ChemSusChem,2019,12,310.
9 Zhu H L, Shen F, Luo W, et al. Nano Energy,2017,33,37.
10 Shen F, Luo W, Dai J Q, et al. Advanced Energy Materials,2016,6,1600377.
11 Peng X W, Zhang L, Chen Z X, et al. Advanced Materials,2019,31,1900341.
12 Liu C M, Kong B L, Zhang P, et al. Electrochimica Acta,2012,60,443.
13 Wu F C, Tseng R L, Hu C C, et al. Journal of Power Sources,2004,138,351.
14 Liu Y X, Zhao G J. Wood Science, China Forestry Publishing House, China,2012(in Chinese).
刘一星,赵广杰.木材学,中国林业出版社,2012.
15 Berglund L A, Burgert I. Advanced Materials,2018,30,1704285.
16 Huang J L, Zhao B T, Liu T, et al. Advanced Fuctional Materials,2019,29,1902255.
17 Zhu M W, Jiao C, Wang W L, et al. ACS Applied Materials Interfaces,2018,10,28566.
18 Zhu M W, Song J W, Li T, et al. Advanced Materials,2016,28,5181.
19 Song J W, Chen C J, Zhu S Z, et al. Nature,2018,554,224.
20 Chen C J, Zhang Y, Li Y J,et al. Energy Environment Science,2017,10,538.
21 Chen F, Song S A, Zhu M W, et al. ACS Nano,2017,11,4275.
22 Chen C J, Li Y J, Song J W, et al. Advanced Materials,2017,29,1700981.
23 Jiang F, Li T, Li Y J, et al. Advanced Materials,2018,30,1703453.
24 Huang Y Y, Shi T L, Zhong Y, et al. Electrochimica Acta,2018,269,45.
25 Zhang Z T, Liao M, Hou H Q, et al. Advanced Materials,2018,30,1704261.
26 Ren J, Li L, Chen C, et al. Advanced Materials,2013,25(8),2155.
27 Xi Z W, Zhang X, Ma Y S, et al. ChemElectroChem,2018,5,3127.
28 Wang C, Xiong Y, Wang H W, et al. Journal of Colloid and Interface Science,2018,528,349.
29 Wu C L, Zhang S, Wu W, et al. Carbon,2019,150,311.
30 Wang Y M, Lin X J, Liu T, et al. Advanced Functional Materials,2018,28,1806207.
31 Jiang J H, Zhang L, Wang X Y, et al. Electrochimica Acta,2013,113,481.
32 Zhang S, Wu C L, Wu W, et al. Journal of Power Sources,2019,424,1.
33 Tang Z J, Pei Z X, Wang Z F, et al. Carbon,2018,130,532.
34 Taer E, Deraman M, Talib I A, et al. Current Applied Physics,2010,10,1071.
35 Horng Y Y, Lu Y C, Hsu Y K, et al. Journal of Power Sources,2010,195,4418.
36 Teng S, Siegel G, Prestgard M C, et al. Electrochimica Acta,2015,161,343.
37 Taer E, Deraman M, Talib I A, et al. International Journal of Electrochemical Science,2011,6,3301.
38 Yang X G, Wu Q L. Nanocarbon and their characterization, Chemical Industry Press, China,2016(in Chinese).
杨序纲,吴琪琳.纳米碳及其表征,化学工业出版社,2016.
39 Lv S Y, Fu F, Wang S Q, et al. Electronic Materials Letters,2015,11(4),633.
40 Wu C L, Zhang S, Wu W, et al. Carbon,2019,150,311.
41 Wei Y. Supercapacitor: key material preparation and application, Chemical Industry Press, China,2018(in Chinese).
魏颖.超级电容器:关键材料制备及应用,化学工业出版社,2018.
42 Wan C C, Jiao Y, Li J. RSC Advances,2016,6(69),64811.
43 Chen C J, Zhang Y, Li Y J, et al. Energy Environment Science,2017,10,538.
44 Wang Y M, Lin X J, Liu T, et al. Advanced Functional Materials,2018,28,1806207.
45 Wan C C, Li J. RSC Advance,2016,6(89),86006.
46 Jiao Y, Wan C C, Li J. Journal of Materials Science: Materials in Electronics,2016,28(3),2634.
47 Liu G Y, Li Y N, Wang B S. Materials Letters,2015,139,385.
48 Huang J L, Zhao B T, Liu T, et al. Advanced Functional Materials,2019,29(31),1902255.
49 Zhang Y, Luo W, Wang C W, et al. Proceedings of the National Academy of Sciences of the United States of America, USA 2017,114,3584.
50 Chen C J, Zhang Y, Li Y J, et al. Advanced Energy Materials,2017,7,1700595.
51 Lu L L, Lu Y Y, Xiao Z J, et al. Advanced Material,2018,30,1706745.
52 Abraham K M, Jiang Z. Journal of Electrochemical Society,1996,143, 1.
53 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials,2012,11,9.
54 Girishkumar G, McCloskey B, Luntz A C, et al. The Journal of Physical Chemisitry Letters,2010,11,19.
55 Xu S M, Shyamal K D, Lynden A A. RSC Advance,2013,3,6656.
56 Luo J R, Yao X H, Yang L, et al. Nano Research,2017,10(12),4318.
57 Chen C J, Xu S M, Kuang Y D, et al. Advanced Energy Materials,2019,9,1802964.
58 Xu S M, Chen C J, Kuang Y D, et al. Energy Environment Science,2018,11,3231.
59 Luo C, Zhu H L, Luo W, et al. ACS Applied Materials interfaces,2017,9,14801.
60 Li Y J, Chen C J, Luo W, et al. ACS Nano,2017,11,4801.
61 Marion A, Patrick S, Lar B, et al. Journal of Materials Chemistry A,2015,3,24103.
62 Antonio G P, Bertrand L, Julian M F, et al. ACS Applied Materials Interfaces,2016,8,30890.
63 Fuen X, Yu F J, Jie S, et al. ACS Applied Materials Interfaces,2018,10,32192.
[1] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[2] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[3] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[4] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[5] 裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
[6] 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066.
[7] 李晶, 秦元斌, 宁晓辉. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020, 34(16): 16001-16005.
[8] 王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
[9] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[10] 张文林, 冉奋. 具有高比电容的蘑菇衍生碳材料[J]. 材料导报, 2020, 34(12): 12010-12014.
[11] 吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
[12] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[13] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[14] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[15] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed