Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16001-16005    https://doi.org/10.11896/cldb.19070270
  无机非金属及其复合材料 |
改进高温固相法制备磷酸锰铁锂正极材料
李晶, 秦元斌, 宁晓辉
西安交通大学材料科学与工程学院,西安 710049
Preparation of Lithium Manganese Iron Phosphate Cathode Material by Improved High-temperature Solid-state Method
LI Jing, QIN Yuanbin, NING Xiaohui
School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 4149KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 LiMn1-xFexPO4具有制备成本低廉、环境友好、能量密度高、热稳定和循环稳定等优点,在锂离子电池中具有良好的应用前景。在目前制备LiMn1-xFexPO4的各种方法中,高温固相法因其工艺简单、成本低廉、产量较高的特点被广泛采用。然而通过高温固相法制得的LiMn1-xFexPO4普遍存在粒径分布不均匀、颗粒容易团聚等问题。针对以上问题,本实验以蔗糖为碳源,通过一种改进的高温固相法制得了二次包碳的LiMn0.5Fe0.5-PO4材料。利用X射线衍射法(XRD)、透射电镜(TEM)、扫描电镜(SEM)表征材料的物相结构, 结果表明,制备的二次包碳的LiMn0.5Fe0.5PO4材料是单相橄榄石结构,平均尺寸为260 nm。采用恒流充放电的测试方法表征材料的电化学性能,其在0.1C、1C和10C的倍率下,放电比容量分别可达到165 mAh/g、132 mAh/g和92 mAh/g,且在1C下循环100周后的容量保持率超过90%,具有良好的倍率性和循环稳定性。同时,本实验还通过循环伏安法(CV)和交流阻抗法(EIS)详细讨论了二次包碳工艺能够改善产物电化学性能的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晶
秦元斌
宁晓辉
关键词:  磷酸锰铁锂  磷酸二氢锰  二次包碳  锂离子电池    
Abstract: LiMn1-xFexPO4 with the advantages of low cost, environmental amity, high energy density, good thermal stability as well as superior cycling stability, has a good application prospect for lithium-ion batteries. Among various methods for preparing LiMn1-xFexPO4, the high-temperature solid-state method has been widely used because of its simple process, low cost and high yield. However, the particle size of LiMn1-x-FexPO4 is not well-distributed by the high-temperature solid-state method and the particles are easy to aggregate. To solve these problems, the sucrose was used as carbon source to obtain secondary carbon-coated LiMn0.5Fe0.5PO4 material by an improved high-temperature solid-state method in this paper. The structure and the morphologies of the as-prepared materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM). The results showed that the secondary carbon-coated LiMn0.5Fe0.5-PO4 had a single olivine phase and an average particle size of 260 nm. The electrochemical properties of the secondary carbon-coated LiMn0.5-Fe0.5PO4 were studied by galvanostatic charge-discharge method. The LiMn0.5Fe0.5PO4/C could deliver discharge capacities of 165 mAh/g, 132 mAh/g and 92 mAh/g at 0.1C, 1C, and 10C rate, respectively. The capacity retention was more than 90% after 100 cycles at 1C, showing the excellent rate capability and cyclability. In addition, the reason for the improved electrochemical properties of the secondary carbon-coated LiMn0.5Fe0.5PO4 had also been investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements.
Key words:  lithium manganese iron phosphate    manganese dihydrogen phosphate    secondary carbon inclusion    lithium ion battery
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TM911  
基金资助: 国家自然科学基金面上项目(51874228);国家自然科学基金重点项目(U1766216)
通讯作者:  xiaohuining@mail.xjtu.edu.cn   
作者简介:  李晶,西安交通大学, 硕士研究生,主要从事锂离子电池正极材料的制备和改性研究。
宁晓辉,西安交通大学材料学院副教授,博士研究生导师。2003年和2006年分别获得湖南大学学士和硕士学位,2011年于北京科技大学有色金属冶金专业取得博士学位,2012-2013在麻省理工学院Donald Sadoway教授课题组进行博士后研究工作,同年加入西安交通大学材料学院工作至今。主要研究方向为电化学储能材料和器件的研究与开发。
引用本文:    
李晶, 秦元斌, 宁晓辉. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020, 34(16): 16001-16005.
LI Jing, QIN Yuanbin, NING Xiaohui. Preparation of Lithium Manganese Iron Phosphate Cathode Material by Improved High-temperature Solid-state Method. Materials Reports, 2020, 34(16): 16001-16005.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070270  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16001
1 Deng Y F, Yang C, Zou K, et al. Advanced Energy Materials,2017,7, 1601958.
2 Yang W C, Bi Y J, Qin Y P, et al. Journal of Power Sources,2015,275,785.
3 Kim J K, Vijaya R, Zhu L, et al. Journal of Power Sources,2015,275,106.
4 Ye F, Wang L, He X, et al. Journal of Power Sources,2014,253,143.
5 Zhou X, Deng Y, Wan L, et al. Journal of Power Sources,2014,265,223.
6 Zhou X, Xie Y, Deng Y, et al. Journal of Materials Chemistry A,2015,3,996.
7 Kim M S, Kim H K, Lee S W, et al. Scientific Reports, 2016,6, 26686.
8 Shen H, Xiang W, Shi X, et al. Ionics,2015,22,193.
9 Wang Y, Wu C Y, Yang H, et al. Journal of Materials Chemistry A,2018,6,10395.
10 Wang K, Hou M, Yuan S, et al. Electrochemistry Communications,2015,55,6.
11 Xiang W, Wang E H, Chen M Z, et al. Electrochimica Acta,2015,178,353.
12 Xiang W, Zhong Y J, Ji J Y, et al. Physical Chemistry Chemical Phy-sics,2015,17,18629.
13 Yan S Y, Wang C Y, Gu R M, et al. Journal of Solid State Electroche-mistry,2015,19,2943.
[1] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[2] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[3] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[4] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[5] 吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
[6] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[7] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[8] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[9] 杨果, 马壮, 杨绍斌, 董伟, 沈丁. 低比表面积酚醛树脂硬碳的制备及电化学性能[J]. 材料导报, 2019, 33(22): 3820-3824.
[10] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[11] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[12] 程成, 肖方明, 王英, 唐仁衡, 裴和中. 基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料[J]. 材料导报, 2019, 33(18): 3005-3011.
[13] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[14] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[15] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed