Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3005-3011    https://doi.org/10.11896/cldb.18080013
  无机非金属及其复合材料 |
基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料
程成1, 2, 3, 肖方明2, 3, 王英2, 3, 唐仁衡2, 3, 裴和中1
1 昆明理工大学材料科学与工程学院,昆明 650093
2 广东省稀土开发及应用重点实验室,广州 510650
3 广东省稀有金属研究所,广州 510650
Graphene Modified Fe-Si@C/Graphene Composite Anode Material
CHENG Cheng1,2,3, XIAO Fangming2,3, WANG Ying2,3, TANG Renheng2,3, PEI Hezhong1
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 Guangdong Province Key Laboratory of Rare Earth Development and Application, Guangzhou 510650
3 Guangdong Research Institute of Rare Metals, Guangzhou 510650
下载:  全 文 ( PDF ) ( 5994KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以商业Fe-Si、沥青作为原料,石墨烯作为导电剂,采用机械球磨和高温热解制得具有石墨烯和无定形碳包覆结构的Fe-Si@C/石墨烯复合负极材料。将以同样方法制备添加碳纳米管(CNTs)的Fe-Si@C/CNTs、不添加导电剂的Fe-Si@C及原料Fe-Si作为对比,分析比较各负极材料的电化学性能。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)和恒流充放电测试仪对复合材料的物相、颗粒形貌及电化学性能进行表征。结果表明,采用Fe-Si@C/石墨烯制备的电池的可逆容量得到了有效提升,同时表现出优异的循环稳定性和倍率性能,其首次放电比容量为916.3 mAh/g,库仑效率为82.4%,200 mA/g的电流密度下循环100周后放电容量稳定在600 mAh/g左右。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程成
肖方明
王英
唐仁衡
裴和中
关键词:  锂离子电池  Fe-Si合金  石墨烯  负极材料  碳包覆    
Abstract: Graphene and amorphous carbon coated Fe-Si@C/graphene anode composite was prepared by mechanical milling and high temperature pyrolysis, using commercial Fe-Si and asphalt as raw materials, adding graphene as conductive agent. In contrast, Fe-Si@C/CNTs, Fe-Si@C and Fe-Si were prepared in the same way in order to analyze the electrochemical property differences of each composite. The phase composition, morphology and electrochemical performance of the composites were detected by X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy disperse spectroscopy (EDS) and constant current charge-discharge test. The results reveal that the reversible capacity of Fe-Si@C/graphene has been effectively improved and it exhibits superior cyclability and rate performance. It’s initial discharge specific capacity is 916.3 mAh/g and the initial Coulombic efficiency is 82.4%. What’s more, it’s specific capacity remains above 600 mAh/g after 100 cycles at a current density of 200 mA/g.
Key words:  lithium ion battery    Fe-Si alloy    graphene    anode material    carbon coating
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TM912.9  
基金资助: 广东省自然科学基金(2014A030308015);广东省省级科技计划项目(2015B010116002;2017A070701022);广东省科学院实施创新驱动发展能力建设专项(2017GDASCX-0110;2018GDASCX-0110)
通讯作者:  peihezhong@vip.qq.com   
作者简介:  程成,材料工程专业,昆明理工大学硕士研究生。2017年7月至2019年6月在广东省稀有金属研究所联合培养学习,主要从事锂离子电池材料研究。
裴和中,昆明理工大学,工学博士,副教授。1988年毕业于北京航空航天大学材料系,获工学硕士学位。1988年—1994年在重庆兵器工业第59研究所工作,从事金属材料的腐蚀机理以及表面工程研究。1994年至今在昆明理工大学任教。主要从事腐蚀理论、表面技术、电化学理论及应用研究。近年发表论文及专利30余篇,包括授权专利一项。
引用本文:    
程成, 肖方明, 王英, 唐仁衡, 裴和中. 基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料[J]. 材料导报, 2019, 33(18): 3005-3011.
CHENG Cheng, XIAO Fangming, WANG Ying, TANG Renheng, PEI Hezhong. Graphene Modified Fe-Si@C/Graphene Composite Anode Material. Materials Reports, 2019, 33(18): 3005-3011.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080013  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3005
[1] Besenhard J O, Yang J, Winter M. Journal of Power Sources, 1997,68(1), 87.
[2] Oumellal Y, Delpuech N, Mazouzi D, et al. Journal of Materials Chemistry, 2011, 21(17),6201.
[3] Cui L F, Ruffo R, Chan C K, et al. Nano Letters, 2009, 9(1),491.
[4] Ren J, Wang K, He X, et al. Progress in Chemistry, 2005, 17(4), 597.
[5] Yang J, Tang J J, Lou S J, et al.Journal of Central South University (Science and Technology),2011, 42(4),859(in Chinese).杨娟,唐晶晶,娄世菊,等. 中南大学学报(自然科学版), 2011, 42(4),859.
[6] Fukata N, Mitome M, Bando Y, et al. Nano Energy, 2016, 26,37.
[7] Dong H, Feng R X, Ai X P, et al. Electrochimica Acta, 2004, 49(28),5217.
[8] Tang H, Zhang Y J, Xiong Q Q, et al. Electrochimica Acta, 2015, 156,86.
[9] Wang B, Li X, Zhang X, et al. ACS Nano, 2013, 7(2),1437.
[10] Wang J, Liu D H, Wang Y Y, et al. Journal of Power Sources, 2016, 307,738.
[11] Wen L, Liu C M, Song R S, et al. Acta Chimica Sinica,2014, 72(3),333(in Chinese).闻雷, 刘成名, 宋仁升,等. 化学学报, 2014, 72(3),333.
[12] Yu Z J, Wang Y L, Deng H G, et al. Journal of Inorganic Materials, 2013,28(5),515(in Chinese).虞祯君,王艳莉,邓洪贵,等.无机材料学报,2013,28(5),515.
[13] Wei L, Hou Z, Wei H. Electrochimica Acta, 2017, 229,445.
[14] Mukanova A, Nurpeissova A, Urazbayev A, et al. Electrochimica Acta, 2017, 258,800.
[15] He W, Tian H, Zhang S, et al. Journal of Power Sources, 2017, 353,270.
[16] Chen Y, Hu Y, Shen Z, et al. Electrochimica Acta, 2016, 210,53.
[17] Wang L, Ding C X, Zhang L C, et al. Journal of Power Sources, 2010, 195(15),5052.
[18] Chang J, Huang X, Zhou G, et al. Advanced Materials, 2014, 26(5),758.
[19] Xie J X, Imannishi N, Zhang T, et al. Materials Chemistry & Physics, 2010, 120(2),421.
[20] Wu W, Liang Y, Ma H, et al. Electrochimica Acta, 2016, 187,473.
[21] Xu Y, Zhu Y, Han F, et al. Advanced Energy Materials, 2015, 5,1400753.
[22] Bai X, Yu Y, Kung H H, et al. Journal of Power Sources, 2016, 306,42.
[23] Qin J, Wu M, Feng T, et al. Electrochimica Acta, 2017, 256,259.
[24] Chan C K, Peng H L, Liu G, et al. Nature Nanotechnology, 2008, 3,31.
[25] Hassan F M, Chabot V, Elsayed A R, et al. Nano Letters, 2014, 14(1),277.
[26] Du P, Gao J K, Zhang S L.Power Technology, 2007, 31(8),609(in Chinese).杜萍,高俊奎,张绍丽. 电源技术, 2007, 31(8),609.
[27] Dong H, Ai X P, Yang H X. Electrochemistry Communications, 2003, 5(11),952.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[5] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[6] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[7] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[8] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[9] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[10] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[11] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[12] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[13] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[14] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[15] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[7] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed