Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3561-3579    https://doi.org/10.11896/cldb.18090309
  无机非金属及其复合材料 |
锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望
田柳文1, 于华1, 章文峰1, 陈涛1, 黄跃龙1, 郑先峰2
1 西南石油大学光伏产业技术研究院,成都 610500
2 Nanomaterials Centre, The University of Queensland, Queensland 4072, Australia
The Star Material of Lithium Ion Batteries, LiFePO4: Basic Properties,Optimized Modification and Future Prospects
TIAN Liuwen1, YU Hua1, ZHANG Wenfeng1, CHEN Tao1, HUANG Yuelong1, ZHENG Xianfeng2
1 Institute of Photovoltaics, Southwest Petroleum University, Chengdu 610500
2 Nanomaterials Centre, The University of Queensland, Queensland 4072, Australia
下载:  全 文 ( PDF ) ( 47528KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸铁锂(LiFePO4, LFP)属于橄榄石型锂过渡金属磷酸盐,因具有突出的优点,如成本较低、安全性高、环境友好、元素储量丰富、晶体结构稳定、工作电压平稳等,而成为目前商业化应用最成功的锂离子电池正极材料之一。然而,LFP稳定的晶体结构也导致了其低的电子导电率(10-9 ~10-10 S ·cm-1)和锂离子(Li+)迁移率(10-13~10-16 cm2·s-1),使其电化学性能受到严重限制。因此,克服材料本身缺陷,提升其可逆容量及倍率性能,便成为国内外储能器件领域的热门课题之一。一方面,持续的基础研究使人们对LFP及其类似材料有了更加清晰的认识,为LFP的进一步优化改性提供了理论依据。另一方面,目前LFP的商业化生产主要采用固相法,其电化学性能仍有很大的提升空间,改进生产工艺或开发新的产业化制备技术是学术界和产业界共同关注的重要方向。
    近几年来,研究者们在LFP的改性优化研究上取得了丰硕成果,LFP的改性优化策略主要有以下几种:(1) 结构纳米化;(2) 先进碳材料复合;(3) 晶面取向工程;(4) 原位碳包覆;(5) 抑制或消除缺陷;(6) 离子掺杂;(7) 量子点改性等。实现LFP基复合材料优异电化学性能需结合多种改性策略,单一改性策略难以实现性能突破。由于锂离子(Li+)在LFP中沿b轴方向具有一维扩散特性,制备具有(010)晶面择优取向的LFP有利于缩短Li+在LFP 体相中的传输距离,增加脱嵌位点,提升反应动力学性能。因此,晶面取向工程成为近几年提升LFP性能的重要策略。另外,随着对LFP基础研究的不断深入,在电池充放电过程中Li+的脱嵌、传输、反应机理及材料结构演变等动态过程方面也取得了一系列重要进展。
    本文基于橄榄石型LFP(Pnma)的晶体结构,系统总结了Li+的扩散机制、(010)晶面特性及其对材料电化学性能的影响,并从七个方面综述了近几年LFP改性优化的研究进展。最后,指出了LFP未来的主要发展方向及研究思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田柳文
于华
章文峰
陈涛
黄跃龙
郑先峰
关键词:  磷酸铁锂  锂离子扩散  反位缺陷  (010)晶面  正极材料  锂离子电池    
Abstract: LiFePO4 (LFP), an important member of the olivine-type lithium transition metal phosphate family, is currently regarded as one of the most successful commercialized cathode materials for lithium-ion batteries due to its prominent merits, including low cost, high safety, environmental friendliness, abundant resource, stable crystal structure, flat voltage profile, etc. However, its stable crystal structure leads to low electronic conductivity (10-9—10-10 S·cm-1) and lithium ions mobility (10-13—10-16 cm2·s-1), which severely limit its electrochemical perfor-mance. In this regard, overcoming the intrinsic bottlenecks of material and elevating its reversible capacity as well as rate capability, have become one of the hot topics in the field of energy storage devices. On the one hand, continuous efforts devoted in fundamental researches have made us a more clear understanding over LFP and analogous materials, and provided a theoretical basis for further optimization and modification of LFP. On the other hand, the electrochemical performance of commercial production of LFP prepared via solid phase methods, the most commonly used ones at present, still has tremendous potential for enhancement. Consequently, improving the production process or developing new industrialized preparation technologies are of significant concern both in academic and in industry.
    In recent years,researchers have achieved fruitful results in the modification and optimization of LFP by adopting a variety of optimization strategies:Ⅰ. structural nanosizing; Ⅱ. coating with advanced carbon materials, Ⅲ. crystal orientation engineering; Ⅳ. in-situ carbon coating, Ⅴ. suppressing or eliminating defects, Ⅵ. ions doping and Ⅶ. quantum dots modification, etc. Indeed, achieving superior electrochemical performance of LFP-based composites requires affective combination of multiple methodologies, and it is unadvisable to expect to make breakthrough with a single approach. Moreover, for lithium ions migrate with single diffusion channels along the b-axis in LFP bulk phase, preparing LFP with (010) crystal planes preferred orientation is beneficial to shorten the transmission distance of lithium ions, thus increasing de-intercalation/intercalation sites and in turns enhancing reaction kinetics. In this respect, the crystal orientation engineering has been a crucial strategy for further improving the performances of LFP. Besides, with the deepening of the basic research of LFP, a series of significant progresses have been made in the dynamic processes, such as lithium ions delithiation/relithiation, transportation, reaction mechanism and material structure evolution.
    Based on the research exploring of crystal structure of olivine lithium iron phosphate (Pnma), this paper provides a systematical summary over the lithium ions diffusion in LFP crystal, the characteristic of (010) crystal plane and its influence on electrochemical performances, as well as a thorough review of the seven aspects. Furthermore, it also points out the research directions and perspectives of LFP in the near future, involving mechanism research and applied research.
Key words:  LiFePO4    lithium ions diffusion    anti-site defects    (010) planes    cathode materials    lithium-ion batteries
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TM914  
作者简介:  田柳文,男,本科毕业于四川大学新能源材料与器件专业,研究方向为磷酸铁锂锂离子电池,指导老师为吴昊副研究员。2017年进入西南石油大学光伏产业技术研究院攻读硕士学位,师从黄跃龙、于华教授。目前研究方向为高效及柔性钙钛矿太阳电池,储能材料与技术。
    于华,教授,博导,四川省千人计划创新领军人才。2003年、2006年先后于哈尔滨工业大学、中国科学院广州能源研究所获得学士、硕士学位。2010年于澳大利亚格里菲斯大学获博士学位。之后在澳大利亚昆士兰大学国家纳米材料研究中心从事博士后研究(2011—2015年),并继续在澳大利亚先进材料处理与加工中心从事研究员工作(2015—2018年)。于华博士目前就职于西南石油大学光伏产业技术研究院,长期致力于智能薄膜材料在新能源器件包括太阳能电池、锂电池和智能玻璃等方向的应用性研究。
    黄跃龙,教授,博导,中组部千人计划特聘专家。西南石油大学光伏产业技术研究院院长。1998年毕业于兰州大学物理系,获得学士学位;2001年获得兰州大学物理科学与技术硕士学位;2001—2005年获得德国DAAD奖学金,在德国哈根大学电子工程与信息学院获得工学博士学位。德国于利希国家研究中心博士后。黄跃龙博士专注于硅材料、硅电子器件、光伏电池技术研究(高效率硅薄膜和硅异质结太阳能电池技术),从事光伏电池的研发和产业化推广工作。在推动科技成果转化工作、科技企业创新、科技人员创业方面拥有丰富经验,在多只股权投资基金中担任投资决策委员会委员,并多次担任中组部千人计划评审委员。
引用本文:    
田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
TIAN Liuwen, YU Hua, ZHANG Wenfeng, CHEN Tao, HUANG Yuelong, ZHENG Xianfeng. The Star Material of Lithium Ion Batteries, LiFePO4: Basic Properties,Optimized Modification and Future Prospects. Materials Reports, 2019, 33(21): 3561-3579.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090309  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3561
1 Padhi A K, Nanjundaswamy K S, Goodenough J B.Journal of the Electrochemical Society, 1997, 144(4), 1188.
2 Yang S, Song Y, Zavalij P Y, Whittingham M S. Electrochemistry Communications, 2002, 4(3), 239.
3 Ouyang C, Shi S, Wang Z, et al. Physical Review B, 2004, 16(13), 2265.
4 Chen J, Wang S, Whittingham M S. Journal of Power Sources, 2007, 174(2), 442.
5 Fisher C A J, Islam M S. Journal of Materials Chemistry, 2008, 18(11), 1209.
6 Zhang W J. Journal of Power Sources, 2011, 196(6), 2962.
7 Andersson A S, Kalska B, Häggström L, et al. Solid State Ionics, 2000, 130(1-2), 41.
8 Yuan L X, Wang Z H, Zhang W X, et al. Energy & Environmental Science, 2011, 4(2), 269.
9 Liu H, Strobridge F C, Borkiewicz O J, et al. Science, 2014, 344(6191), 1252817.
10 Takahashi M, Tobishima S I, Takei K, et al. Solid State Ionics, 2002, 148(3-4), 283.
11 Jiang J, Dahn J R. Electrochemistry Communications, 2004, 6(1), 39.
12 Chung S Y, Blocking J T, Andersson A S, et al. Nature Materials, 2002, 1(2), 123.
13 Morgan D, Ven A V D, Ceder G. Electrochemical and Solid-State Letters, 2004, 7(2), A30.
14 Prosini P P, Lisi M, Zane D, et al. Solid State Ionics, 2002, 148(1-2), 45.
15 Islam M S, Driscoll D J, Fisher C A J, et al. Chemistry of Materials, 2005, 17(20), 5085.
16 Ellis B, Perry L K, Ryan D H, et al. Journal of the American Chemical Society, 2006, 128(35), 11416.
17 Amin R, Balaya P, Maier J. Electrochemical and Solid-State Letters, 2007, 10(1), A13.
18 Amin R, Maier J, Balaya P, et al. Solid State Ionics, 2008, 179(27-32), 1683.
19 Nishimura S, Kobayashi G, Ohoyama K, et al. Nature Materials, 2008, 7(9), 707.
20 Li J, Yao W, Martin S, et al. Solid State Ionics, 2008, 179(35-36), 2016.
21 Zhang P, Wu Y, Zhang D, et al. Journal of Physical Chemistry A, 2008, 112(24), 5406.
22 Yang J, Tse J S. Journal of Physical Chemistry A, 2011, 115(45), 13045.
23 Tealdi C, Spreafico C, Mustarelli P. Journal of Materials Chemistry, 2012, 22(47), 24870.
24 Adams S J. Journal of Solid State Electrochemistry, 2010, 14(10), 1787.
25 Boulfelfel S E, Seifert G, Leoni S. Journal of Materials Chemistry, 2011, 21(41), 16365.
26 Fisher C A J, Prieto V M H, Islam M S. Chemistry of Materials, 2008, 20(18), 5907.
27 Chung S Y, Choi S Y, Yamamoto T, et al. Angewandte Chemie, 2009, 48(3), 543.
28 Malik R, Burch D, Bazant M, et al. Nano Letters, 2010, 10(10), 4123.
29 Aricò A S, Bruce P, Scrosati B, et al. Nature Materials, 2005, 4(5), 366.
30 Kim D H, Kim J. Electrochemical and Solid-State Letters, 2006, 9(9), A439.
31 Gaberscek M, Dominko R, Jamnik J. Electrochemistry Communications, 2007, 9(12), 2778.
32 Ellis B, Wang H K, Makahnouk W R M, et al. Journal of Materials Chemistry, 2007, 17(30), 3248.
33 Guo Y G, Hu J S, Wan L J. Advanced Materials, 2008, 20(15), 2878.
34 Badi S P, Wagemaker M, Ellis B, et al. Journal of Materials Chemistry, 2011, 21(27), 10085.
35 Nan C, Lu J, Li L, et al. Nano Research, 2013, 6(7), 469.
36 Whiteside A, Fisher C A, Parker S C, et al. Physical Chemistry Chemical Physics, 2014, 16(39), 21788.
37 Lv W, Niu Y, Jian X, et al. Applied Physics Letters, 2016, 108(8), 1188.
38 Eftekhari A. Journal of Power Sources, 2017, 343, 395.
39 Wang L, Zhou F, Meng Y S, et al. Physical Review B, 2007, 76(16), 165435.
40 Chen M M, Ma Q Q, Wang C Y, et al. Journal of Power Sources, 2014, 263, 268.
41 Li W, Wei Z, Huang L, et al. Journal of Alloys and Compounds, 2015, 651, 34.
42 Streltsov V A, Belokoneva E L, Tsirelson V G, et al. Acta Crystallographica, 1993, 49(2), 147.
43 Song J, Wang L, Shao G, et al. Physical Chemistry Chemical Physics, 2014, 16(17), 7728.
44 Saravanan K, Reddy M V, Balaya P, et al. Journal of Materials Chemistry, 2009, 19(5), 605.
45 Yang S, Zhou X, Zhang J, et al. Journal of Materials Chemistry, 2010, 20(37), 8086.
46 Ma Z, Shao G, Fan Y, et al. ACS Applied Materials & Interfaces, 2014, 6(12), 9236.
47 Mei R, Song X, Yang Y, et al. RSC Advances, 2014, 4(11), 5746.
48 Zhao Y, Peng L, Liu B, et al. Nano Letters, 2014, 14(5), 2849.
49 Qin X, Wang J, Xie J, et al. Physical Chemistry Chemical Physics, 2012, 14(8), 2669.
50 Lu J, Chen Z, Ma Z, et al. Nature Nanotechnology, 2016, 11(12), 1031.
51 Wang L, He X, Sun W, et al. Nano Letters, 2012, 12(11), 5632.
52 Nan C, Lu J, Chen C, et al. Journal of Materials Chemistry, 2011, 21(27), 9994.
53 Ma Z, Shao G, Fan Y, et al. ACS Applied Materials & Interfaces, 2014, 6(12), 9236.
54 Zhang K, Lee J T, Li P, et al. Nano Letters, 2015, 15(10), 6756.
55 Tian Z, Zhou Z, Liu S, et al. Solid State Ionics, 2015, 278, 186.
56 Wang B, Xie Y, Liu T, et al. Nano Energy, 2017, 42, 363.
57 Wu Y, Wen Z, Li J. Advanced Materials, 2011, 23(9), 1126.
58 Qin G, Xue S, Ma Q, et al. Angewandte Chemie International Edition, 2014, 16(2), 260.
59 Fan J, Chen J, Chen Y, et al. Journal of Materials Chemistry A, 2014, 2(14), 4870.
60 Gong H, Xue H, Wang T, et al. Journal of Power Sources, 2016, 318, 220.
61 Hwang J, Kong K C, Chang W, et al. Nano Energy, 2017, 36, 398.
62 Whittingham M S, Song Y, Lutta S, et al. Journal of Materials Chemistry, 2005, 15(33), 3362.
63 Yang H, Wu X L, Cao M H, et al. The Journal of Physical Chemistry C, 2009, 113(8), 3345.
64 Qian J, Zhou M, Cao Y, et al. The Journal of Physical Chemistry C, 2011, 114(8), 3477.
65 Sun C, Rajasekhara S, Goodenough J B, et al. Journal of the American Chemical Society, 2011, 133(7), 2132.
66 Yu F, Zhang J, Yang Y, et al. Journal of Power Sources, 2010,195(19), 6873.
67 Xu D, Chu X, He Y B, et al. Electrochimica Acta, 2015, 152, 398.
68 Doherty C M, Caruso R A, Drummond C J. Energy & Environmental Science, 2010, 3(6), 813.
69 Chen M, Du C, Song B, et al. Journal of Power Sources, 2013, 223(1), 100.
70 Wu J, Dathar G K, Sun C, et al. Nanotechnology, 2013, 24(42), 424009.
71 Xie H M, Wang R S, Ying J R, et al. Advanced Materials, 2010, 18(19), 2609.
72 Yang M R, Teng T H, Wu S H. Journal of Power Sources, 2006, 159(1), 307.
73 Yu F, Zhang J J, Yang Y F, et al. Journal of Materials Chemistry, 2009, 19(48), 9121.
74 Yu F, Zhang J, Yang Y, et al. Journal of Power Sources, 2009, 189(1), 794.
75 Oh S W, Myung S T, Oh S M, et al. Advanced Materials, 2010, 22(43), 4842.
76 Wu Y, Wen Z, Li J. Advanced Materials, 2011, 23(9), 1126.
77 Du J, Jiao L, Wu Q, et al. Electrochimica Acta, 2013, 98, 288.
78 Chen R, Wu Y, Kong X Y. Journal of Power Sources, 2014, 258, 246.
79 Tu X, Zhou Y, Tian X, et al. Electrochimica Acta, 2016, 222, 64.
80 Kim M S, Lee G W, Lee S W, et al. Journal of Industrial & Engineering Chemistry, 2017, 52, 251.
81 Sun J, Li Z, Ren X, et al. Journal of Alloys and Compounds, 2018, 773, 788.
82 Chen T, Qiu L, Yang Z, et al. Angewandte Chemie International Edition, 2012, 51(48), 11908.
83 Bonaccorso F, Colombo L, Yu G, et al. Science, 2015, 347(6217), 1246501.
84 Yu D, Goh K, Wang H, et al. Nature Nanotechnology, 2014, 9(7), 555.
85 Yoo E J, Kim J, Hosono E, et al. Nano Letters, 2008, 8(8), 2277.
86 Landi B J, Ganter M J, Cress C D, et al. Energy & Environmental Science, 2009, 2(6), 638.
87 Peng H J, Huang J Q, Zhao M Q, et al. Advanced Functional Materials, 2014, 24(19), 2772.
88 Zhang Z, Kong L L, Liu S, et al. Advanced Energy Materials, 2017, 7(11), 1602543.
89 Chong W G, Huang J Q, Xu Z L, et al. Advanced Functional Materials, 2017, 27(4), 1604815.
90 Jing Y. Journal of Materials Chemistry A, 2014, 2(31), 12104.
91 Su L, Hei J, Wu X, et al. Advanced Functional Materials, 2017, 27(10), 1605544.
92 Jing Y, Zhou Z, Cabrera C R, et al. Journal of Materials Chemistry A, 2014, 2(31), 12104.
93 Liu L, Yang X, Lv C, et al. ACS Applied Materials & Interfaces, 2016, 8(11), 7047.
94 Hu L H, Wu F Y, Lin C T, et al. Nature Communications, 2013, 4(1), 1687.
95 Wang B, Abdulla W A, Wang D, et al. Energy & Environmental Science, 2015, 8(3), 869.
96 Ha S H, Lee Y J. Chemistry, 2015, 21(5), 2132.
97 Luo W B, Chou S L, Zhai Y C, et al. Journal of Materials Chemistry A, 2014, 2(14), 4927.
98 Yang W W, Liu J G, Zhang X, et al. Applied Energy, 2017, 195, 1079.
99 Zhou Y, Lu J, Deng C, et al. Journal of Materials Chemistry A, 2016, 4(31), 12065.
100 Zhao, J, Lai H W, Lyu Z Y, et al. Advanced Materials, 2015, 27(23), 3541.
101 Ma H, Xiang J Y, Xia X H. Materials Research Bulletin, 2018, 101, 205.
102 Qiao Y Q, Feng W L, Li J, et al. Electrochimica Acta, 2017, 232, 323.
103 Liu J, Banis M N, Sun Q, et al. Advanced Materials, 2014, 26(37), 6472.
104 Wang B, Liu T, Liu A, et al. Advanced Energy Materials, 2016, 6(16), 1600426.
105 Sheng T, Xu Y F, Jiang Y X, et al. Accounts of Chemical Research, 2016, 49(11), 2569.
106 Cho N, Li F, Turedi B, et al. Nature Communications, 2016, 7, 13407.
107 Gang L, Li C Y, Jian P, et al. Advanced Materials, 2015, 27(23), 3507.
108 Tian N, Zhou Z Y, Sun S G, et al. Science, 2007, 316(5825), 732.
109 Li Y, Weker J N, Gent W E, et al. Advanced Functional Materials, 2015, 25(24), 3676.
110 Wang F, Wang X, Chang Z, et al. Nanoscale Horizons, 2016, 1(4), 272.
111 Paolella A, Bertoni G, Marras S, et al. Nano Letters, 2014, 14(12), 6828.
112 Zhang Y, Zhang H J, Feng Y Y, et al. Small, 2016, 12(4), 410.
113 Lin M, Chen Y, Chen B, et al. ACS Applied Materials & Interfaces, 2014, 6(20), 17556.
114 Guo B, Ruan H, Zheng C, et al. Scientific Reports, 2013, 3(1), 2788.
115 Huang X, He X, Jiang C, et al. Industrial & Engineering Chemistry Research, 2017, 56(38), 10648.
116 Min C, Ou X, Shi Z, et al. Ionics, 2018, 24(5), 1285.
117 Pei B, Yao H, Zhang W, et al. Journal of Power Sources, 2012, 220, 317.
118 Tian X, Zhou Y, Tu X, et al. Journal of Power Sources, 2017, 340, 40.
119 Rangappa D, Sone K, Kudo T, et al. Journal of Power Sources, 2010, 195(18), 6167.
120 Murugan A V, Muraliganth T, Manthiram A. Electrochemistry Communications. 2008, 10(6), 903.
121 Murugan A V, Muraliganth T, Manthiram A. Journal of Physical Chemistry C. 2008, 112(37), 46.
122 Zhang Q, Huang S Z, Jin J. Scientific Reports, 2016, 6(1), 25942.
123 Gao C, Zhou J, Liu G, et al. Journal of Materials Science, 2017, 52(3), 1590.
124 Rui X, Zhao X, Lu Z, et al. ACS Nano, 2013, 7(6), 5637.
125 Jiang J, Liu W, Chen J, et al. ACS Applied Materials & Interfaces, 2012, 4(6), 3062.
126 Ferrari S, Lavall R L, Capsoni D, et al. Journal of Physical Chemistry C, 2010, 114(29), 12598.
127 Wang B, Liu A, Abdulla W A, et al. Nanoscale, 2015, 7(19), 8819.
128 Zhang Y, Zhang H, Li X, et al. Nanotechnology, 2016, 27(15), 155401.
129 Liu Y, Gu J, Zhang J, et al. RSC Advances, 2015, 5(13), 9745.
130 Wang B, Abdulla W A, Wang D, et al. Energy & Environmental Science, 2015, 8(3), 869.
131 Peng L, Zhang X, Fang Z, et al. Chemistry of Materials, 2017, 29(24), 10526.
132 Zhao C, Wang L N, Wu H, et al. Materials Research Bulletin, 2018, 97, 195.
133 Song J, Sun B, Liu H, et al. ACS Applied Materials & Interfaces, 2016, 8(24), 15225.
134 Wang H, Wang R, Liu L, et al. Nano Energy, 2017, 39,346.
135 Wang X, Feng Z, Huang J, et al. Carbon, 2018, 127, 149.
136 Zou Y, Chen S, Yang X, et al. Advanced Energy Materials, 2016, 6(24), 1601549.
137 Zhao Q, Zhang Y, Meng Y, et al. Nano Energy, 2017, 34, 408.
138 Hu J, Jiang Y, Cui S, et al. Advanced Energy Materials, 2016, 6(18), 1600856.
139 Zhao C, Wang L N, Chen J, et al. Electrochimica Acta, 2017, 255, 266.
140 Zhang X, Bi Z, He W, et al. Energy & Environmental Science, 2014, 7(7), 2285.
141 Wang Y, Wang Y, Hosono E, et al. Angewandte Chemie, 2008, 120(39), 7571.
142 Li W, Hwang J, Chang W, et al. Journal of Supercritical Fluids, 2016, 116, 164.
143 Golestani E, Javanbakht M, Ghafarian-Zahmatkesh H, et al. Electrochimica Acta, 2017, 259, 903.
144 Bai N, Xiang K, Zhou W, et al. Electrochimica Acta, 2016, 191, 23.
145 Chen J, Whittingham M. Electrochemistry Communications, 2006, 8(5), 855.
146 Chen J, Graetz J. ACS Applied Materials & Interfaces, 2011, 3(5), 1380.
147 Chen J, Bai J, Chen H, et al. Journal of Physical Chemistry Letters, 2011, 2(15), 1874.
148 Chen J, Vacchio M J, Wang S, et al. Solid State Ionics, 2008, 178(31-32), 1676.
149 Qin X, Wang J, Xie J, et al. Physical Chemistry Chemical Physics, 2012, 14(8), 2669.
150 Ashoka S, Nagaraju G, Tharamani C N, et al. Materials Letters, 2009, 63(11), 873.
151 Srinivasan R, Chavillon B, Doussier-Brochard C, et al. Journal of Materials Chemistry, 2008, 18 (46), 5647.
152 Chung S Y, Choi S Y, Yamamoto T, et al. Physical Review Letters, 2008, 100 (12), 125502.
153 Poizot P, Larueue S, Grugeon S, et al. Nature, 2000, 407(6803), 496.
154 Chung S Y, Choi S Y, Lee S, et al. Physical Review Letters, 2012, 108(19), 195501.
155 Chen J, Graetz J. ACS Applied Materials & Interfaces,2011, 3(5), 1380.
156 Liu H, Choe M J, Enrique R A, et al. The Journal of Physical Chemistry C, 121(22), 12025.
157 Jensen K M Ø, Christensen M, Gunnlaugsson H P, et al. Chemistry of Materials, 2013, 25(11), 2282.
158 Wu J, Dathar G K, Sun C, et al. Nanotechnology, 2013, 24(42), 424009.
159 Gibot P, Casas-Cabanas M, Laffont L, et al. Nature Materials, 2008, 7(9), 741.
160 Delacourt C, Poizot P, Tarascon J, et al. Nature Materials, 2005, 4(3), 254.
161 Hamelet S, Casascabanas M, Dupont L, et al. Chemistry of Materials, 2011, 23(1), 32.
162 Paolella A, Bertoni G, Hovington P, et al. Nano Energy, 2015, 16, 256.
163 Paolella A, Turner S, Bertoni G, et al. Nano Letters, 2016, 16(4), 2692.
164 Liu J, Jiang R, Wang X, et al. Journal of Power Sources, 2009, 194(1), 536.
165 Abbate M, Lala S M, Montoro L A, et al. Electrochemical and Solid-State Letters, 2005, 8(6), A288.
166 Huang Y, Xu Y, Yang X.Electrochimica Acta, 2013, 113, 156.
167 Liu Q, Liu W, Li D, et al. Electrochimica Acta, 2015, 184, 143.
168 Talebi-Esfandarani M, Savadogo O. Journal of Applied Electrochemistry, 2014, 44(5), 555.
169 Okada K, Kimura I, Machida K. RSC Advances, 2018, 8(11), 5848.
170 Meethong N, Kao Y H, Speakman S A, et al. Advanced Functional Materials, 2009, 19(7), 1060.
171 Li H, Wang Z, Chen L, et al. Advanced Materials, 2010, 21(45), 4593.
172 Chen M, Shao L L, Yang H B, et al. Electrochimica Acta, 2015, 167, 278.
173 Shu H, Wang X, Wu Q, et al. Journal of Power Sources, 2013, 237, 149.
174 Johnson I D, Lübke M, Wu O Y, et al. Journal of Power Sources, 2016, 302, 410.
175 Örnek A, Bulut E, Can M, et al. Journal of Solid State Electrochemistry, 2013, 17(12), 3101.
176 Talebi-Esfandarani M, Savadogo O. Solid State Ionics, 2014, 261, 81.
177 Xian Z, Tang X, Li Z, et al. Electrochimica Acta, 2010, 55(20), 5899.
178 Wang Y, Feng Z S, Chen J J, et al. Solid State Communications, 2012, 152(16), 1577.
179 Gao C, Zhou J, Liu G, et al. Journal of Alloys and Compounds, 2017, 727, 501.
180 Ban C, Yin W J, Tang H, et al. Advanced Energy Materials, 2012, 2(8), 1028.
181 Ge Y, Yan X, Jing L, et al. Electrochimica Acta, 2010, 55(20), 5886.
182 Long Y F, Su J, Cui X R, et al. Solid State Sciences, 2015, 48, 104.
183 Johnson I D, Blagovidova E, Dingwall P A, et al. Journal of Power Sources, 2016, 326, 476.
184 Johnson I D, Lübke M, Wu O Y, et al. Journal of Power Sources, 2016, 302, 410.
185 Xu Z, Gao L, Liu Y,et al. Journal of the Electrochemical Society, 2016, 163(13), A2600.
186 Satyavani T V S L, Kumar A S, Rao P S V S. Engineering Science and Technology, an International Journal, 2016, 19(1), 178.
187 Zhu Z, Ma J, Wang Z, et al. Journal of the American Chemical Society, 2014, 136(10), 3760.
188 Zhou D, Liu D, Pan G, et al. Advanced Materials, 2017, 29(42), 1704149.
189 Diao S, Zhang X, Shao Z, et al. Nano Energy, 2017, 31, 359.
190 Liu Q, Qin M C, Ke W J, et al. Advanced Functional Materials, 2016, 26(33), 6069.
191 Miao R, Luo Z, Zhong W, et al. Applied Catalysis B, Environmental, 2016, 189, 26.
192 Xia J, Di J, Li H, et al. Applied Catalysis B, Environmental, 2016, 181, 260.
193 Ye M Y, Zhao Z H, Hu Z F, et al. Angewandte Chemie International Edition, 2017, 56(29), 8407.
194 Lei Y, Yang C, Hou J, et al. Applied Catalysis B, Environmental, 2017, 216, 59.
195 Zhang S, Gao H, Liu X, et al. ACS Applied Materials & Interfaces, 2016, 8(51), 35138.
196 Bacon M, Bradley S J, Nann, T, et al. Particle & Particle Systems Cha-racterization, 2014, 31(4), 415.
197 Li H, Shi W, Huang W, et al. Nano Letters, 2017, 17(4), 2328.
198 Liu Z Q, Cheng H, Li N, et al. Advanced Materials, 2016, 28(19), 3777.
199 Liu Y, Liang C, Wu J, et al. Advanced Materials Interfaces, 2018, 5(1), 1700895..
200 Liu J, Zheng M, Shi X, et al. Advanced Functional Materials, 2016, 26(6), 919.
201 Islam M S, Deng Y, Tong L, et al. Materials Today Communications, 2017, 10, 112.
202 Hong X, He L, Ma X, et al. Nano Research, 2017, 10(11), 3743.
203 Mo R, Rooney D, Sun K, et al. Nature Communications, 2017, 8, 13949.
204 Hou H, Banks C E, Jing M, et al. Advanced Materials, 2015, 27(47), 7895.
205 Chen Z, Wu R, Liu M, et al. Advanced Functional Materials, 2017, 27(38), 1702046.
206 Zeng G, Hu X, Zhou B, et al. Nanoscale, 2017, 9(38), 14722.
207 Kang B, Ceder G. Nature, 2009, 458(7235), 190.
208 Malik R, Zhou F, Ceder G. Nature Materials, 2011, 10(8), 587.
209 Liu X, Liu J, Qiao R, et al. Journal of the American Chemical Society, 2012, 134(33), 13708.
210 Chueh W C, Gabaly F E, Sugar J D, et al. Nano Letters, 2013, 13(3), 866.
211 Ebner M, Marone F, Stampanoni M, et al. Science, 2013, 342(6159), 716.
212 Li Y, El G F, Ferguson T R, et al. Nature Materials, 2014, 13(12), 1149.
213 Bai P, Bazant M Z. Nature Communications, 2014, 5(1), 3585.
214 Hess M, Sasaki T, Villevieille C, et al. Nature Communications, 2015, 6(1).
215 Lim J, Li Y, Alsem D H, et al. Science, 2016, 353(6299), 566.
216 Mascaro A, Wang Z, Hovington P, et al. Nano Letters, 2017, 17(7), 4489.
217 Wang B, Wang Y, Wu H, et al. ChemElectroChem, 2017, 4(5), 1141.
218 Liu W, Song M S, Kong B, et al. Advanced Materials, 2017, 29(1), 1603436.
219 Fu K K, Cheng J, Li T, et al. ACS Energy Letters, 2016, 1(5), 1065.
220 Gulzar U, Goriparti S, Miele E, et al. Journal of Materials Chemistry A, 2016, 4(43), 16771.
221 Sun K, Wei T S, Ahn B Y, et al. Advanced Materials, 2013, 25(33), 4539.
222 Du C F, Liang Q, Luo Y, et al. Journal of Materials Chemistry A, 2017, 5(43), 22442.
223 Tian X, Jin J, Yuan S, et al. Advanced Energy Materials, 2017, 7(17), 1700127.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[5] 程成, 肖方明, 王英, 唐仁衡, 裴和中. 基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料[J]. 材料导报, 2019, 33(18): 3005-3011.
[6] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[7] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[8] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[9] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[10] 黄辉, 韩健峰, 王奕顺, 夏阳, 张俊, 甘永平, 梁初, 张文魁. 富锂锰表面超临界CO2辅助包覆磷酸锰锂及其电化学性能[J]. 材料导报, 2018, 32(23): 4072-4078.
[11] 王青福, 刘新刚, 康文彬, 张楚虹. 固相剪切磨盘碾磨法制备四氧化三铁/氮掺杂石墨烯复合材料及其在锂离子电池中的应用[J]. 材料导报, 2018, 32(21): 3689-3696.
[12] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[13] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[14] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[15] 李文超, 唐仁衡, 王英, 王华昆, 肖方明, 黄玲. 锂离子电池SiOx/C/CNTs复合负极材料的制备及其电化学性能[J]. 材料导报, 2018, 32(17): 2920-2924.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed