Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3556-3560    https://doi.org/10.11896/cldb.18120062
  材料与可持续发展(二)――材料绿色制造与加工* |
粉煤灰-电石渣制浆矿化的固碳增强特性
任国宏1, 廖洪强1, 高宏宇1, 闫志华2, 程芳琴1
1 山西大学资源与环境工程研究所,太原 030006
2 长治市杨暴热电粉煤灰综合利用有限公司,长治 046000
Carbon Dioxide-fixing and Compression Strength Enhancing Characteristics ofMineralized Immobilization of Fly Ash-Calcium Carbide Slag Slurry
REN Guohong1, LIAO Hongqiang1, GAO Hongyu1, YAN Zhihua2, CHENG Fangqin1
1 Institute of Resources and Environment Engineering,Shanxi University,Taiyuan 030006
2 Changzhi Yangbao Thermal Power Fly Ash Comprehensive Utilization Co. Ltd.,Changzhi 046000
下载:  全 文 ( PDF ) ( 9475KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为实现工业烟气中CO2矿化固定减排与工业固废建材化利用的协同效应,本工作研究了粉煤灰-电石渣制浆矿化的固碳增强特性。实验考察了电石渣配比、养护温度以及矿化反应时间对胶凝试块抗压强度的影响规律。结果表明,电石渣配比为30%和养护温度为60 ℃时,可获得3 d强度较优的胶凝试块。在电石渣配比为20%~50%之间,获得试块最佳强度的矿化反应时间随电石渣配比增大出现先延长后缩短的趋势,当电石渣配比达40%和矿化时间达50 min时,对应试块的3 d强度最高,较不矿化反应时的强度提高了82.1%。胶凝试块的XRD分析结果表明,浆体碳化反应30 min后,胶凝试块中的氢氧化钙衍射峰完全消失,伴随明显的CaCO3衍射峰出现。TGA测试结果表明,矿化后所得胶凝试块出现明显的CaCO3分解失重峰。电石渣配比分别为20%、30%、40%时,获得最佳3 d强度的试块中Ca(OH)2的存留率分别为75.6%、68.4%和64.8%,碳化度分别为7.9%、5.7%和10.2%,对应每吨胶凝试块可矿化固定CO2的量分别为7 kg、13 kg和31 kg。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任国宏
廖洪强
高宏宇
闫志华
程芳琴
关键词:  CO2矿化  电石渣  粉煤灰  固碳  增强    
Abstract: Aiming at achieving the synergistic effect of CO2 mineralization for emission reduction and industrial solid waste utilization for building mate-rials, we studied the carbon dioxide fixing and compression strength enhancement characteristics of the mineralization of fly ash-calcium carbide slag slurry. Specifically, we investigated the effects of calcium carbide slag ratio, curing temperature and mineralization reaction time on the compression strength of the gelled block samples. According to the results, the gelled block with superior 3 d strength could be obtained under the calcium carbide slag proportion of 30% and the curing temperature of 60 ℃. When the proportion of the carbide slag lay in 20%—50%, mineralization reaction time for achieving best strength of the sample showed a trend of first prolonging then shortening as the increasing proportion of carbide slag. The peak value of 3 d strength achieved under the carbide slag proportion of 40% and the mineralization reaction time of 50 min, which was 82.1% higher than that of the sample without mineralization reaction. XRD analysis indicated that the calcium hydroxide diffraction peak of the sample completely disappeared after 30 min carbonation reaction, accompanied by the appearance of notable CaCO3 diffraction peaks. TGA test results demonstrated that there was an obvious mass loss peak for CaCO3 decomposition of the samples. Corresponding to the carbide slag proportion of 20%, 30% and 40%, the samples with best 3 d strength showed Ca(OH)2 retention rates of 75.6%, 68.4% and 64.8%, carbonization degrees of 7.9%, 5.7% and 10.2%, the capability for mineralized immobilization of CO2 were 7 kg,13 kg and 31 kg per ton of the samples.
Key words:  CO2 mineralization    calcium carbide slag    fly ash    carbon immobilization    strength enhancement
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  X752  
基金资助: 山西省重点研发(MC2016-02)
作者简介:  任国宏,2016年9月到2019年7月就读于山西大学,研究方向为固体废弃物资源化。
    廖洪强,清华大学博士后,教授级高级工程师。国内节能环保及固废资源化领域的知名专家;后进入北京大学和山西大学从事节能环保与固废资源综合利用新技术开发与产业化推广应用工作10余年;承担过国家科技部支持的“863”课题、国家“十一五”科技支撑课题、国家“十二五”科技支撑课题。
引用本文:    
任国宏, 廖洪强, 高宏宇, 闫志华, 程芳琴. 粉煤灰-电石渣制浆矿化的固碳增强特性[J]. 材料导报, 2019, 33(21): 3556-3560.
REN Guohong, LIAO Hongqiang, GAO Hongyu, YAN Zhihua, CHENG Fangqin. Carbon Dioxide-fixing and Compression Strength Enhancing Characteristics ofMineralized Immobilization of Fly Ash-Calcium Carbide Slag Slurry. Materials Reports, 2019, 33(21): 3556-3560.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120062  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3556
1 Ma Zhao, Wang Chuanqin, Li Guangxue, et al. Modernization, 2015, 35(3), 34 (in Chinese).
马钊,王传琴,李广学,等.现代化工,2015,35(3),34.
2 Yao Xingliang. Study on physical and chemical properties of steel slag ultrafine powder and its basic research on desulfurization and carbon fixation. Master's Thesis, Shanxi University, China, 2017 (in Chinese).
姚星亮.钢渣超微粉理化特性及其脱硫固碳基础研究. 硕士学位论文,山西大学, 2017.
3 Jew A D, Rupp E C, Geatche D L, et al. Energy & Fuels, 2015, 29(9),564.
4 Xiong Chuansheng, Wang Wei, Zhu Qi, et al. Jiangsu Building Mate-rials, 2009(3), 23 (in Chinese).
熊传胜,王伟,朱琦,等.江苏建材, 2009(3),23.
5 Florinn, Fennell P. Energy Procedia, 2011,4,830.
6 Zhong Pan, Luo Jinjing, Xue S S, et al. Environmental Sanitation Engineering, 2008, 16(1), 19 (in Chinese).
潘钟,罗津晶,薛姗姗,等.环境卫生工程,2008,16(1),19.
7 Pan Kai.Study on the application of steel slag carbonation fixed carbon dioxide and preparation of building materials. Master's Thesis, Guangxi University, China, 2014 (in Chinese).
潘凯.钢渣碳酸化固定二氧化碳及制备建材产品应用研究. 硕士学位论文,广西大学, 2014.
8 He Z R.Study on the effect of water vapor on CO2 characteristics of cal-cium carbide slag recycling calcination/carbonation capture. Master's Thesis, Shandong University, China, 2016 (in Chinese).
何梓睿.水蒸气对电石渣循环煅烧/碳酸化捕集CO2特性影响研究. 硕士学位论文,山东大学, 2016.
9 Ren Guohong, Liao Hongqiang, Wu Haibin, et al. Journal of Environmental Engineering, 2018, 12(8), 2295 (in Chinese).
任国宏,廖洪强,吴海滨,等. 环境工程学报,2018,12(8),2295.
10 Dong Wenchen, Kang Dejun, Wang Lijiu. Building Materials World, 2004, 25(3), 28(in Chinese).
董文辰, 康德君, 王立久.建材世界, 2004, 25(3),28.
[1] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[2] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[3] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[4] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[5] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[6] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[7] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[8] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[9] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[10] 何浩然, 许俊强, 苗欣, 刘奇, 薄新维. 钼及钼合金表面硅化物涂层的制备、改性及抗氧化性能研究进展[J]. 材料导报, 2019, 33(19): 3227-3235.
[11] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[12] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[13] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[14] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[15] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed