Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2890-2901    https://doi.org/10.11896/cldb.18100193
  无机非金属及其复合材料 |
粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展
姚未来1,江世永1,2,蔡涛1,龚宏伟1,陶帅3
1 陆军勤务学院军事设施系,重庆 401331
2 重庆交通大学土木工程学院,重庆 400074
3 中国人民解放军72695部队,青岛 266103
Research Progress on Creep Response of FRP-strengthened Reinforced Concrete Beams
YAO Weilai1, JIANG Shiyong1,2, CAI Tao1, GONG Hongwei1, TAO Shuai3
1 Department of Military Facility, Army Logistics University of PLA, Chongqing 401331
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074
3 Unit 72695 of PLA, Qingdao 266103
下载:  全 文 ( PDF ) ( 21962KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自20世纪末起,外粘纤维增强复合材料(Fiberreinforced polymers, FRP)加固混凝土技术由于施工方便、FRP性能优异等优势被逐步运用于结构改造、修复补强、抗震加固等实际工程中。FRP本身具有轻质、耐腐蚀、高强度等优点,又由于近年来成本的进一步降低,得到更广泛的应用,目前已基本取代钢材成为最主要的结构加固材料。建筑结构服役年限较长,结构在完成加固后仍将处于长期承受荷载的状态,然而,目前对加固结构在长期荷载下的行为研究不充分,实际加固设计时也未考虑结构的长期效应。鉴于目前粘贴FRP加固技术已广泛应用,大量已加固完成的结构在以上问题尚不十分清楚的情况下工作服役了相当长的时间,有必要对加固结构的长期受荷性能进行深入探讨,同时对该问题的研究、后续可能需要的补救措施的提出又具有迫切性。
粘贴FRP加固混凝土结构在长期荷载作用下变形增大、结构内部出现复杂的应力重分布现象,本质上是由材料的蠕变行为引起。对混凝土的蠕变(徐变)特性研究起步较早,对混凝土的收缩、单轴受压徐变行为已有相对全面的认识,国际上有比较公认的理论模型。研究表明,用于粘贴FRP的环氧树脂(Epoxy resin)结构胶具有明显的蠕变特性,提高环境温度、湿度可增大环氧树脂胶的蠕变变形,甚至引起蠕变断裂。试验研究与数值模拟证实,环氧胶层的蠕变行为将导致粘贴界面的应力出现松弛现象。试验结果表明,用于结构加固的碳纤维增强复合材料(CFRP)、玻璃纤维增强复合材料(GFRP)的抗蠕变能力较强,其蠕变变形可适当忽略。
长期承受外荷载时,粘贴FRP加固混凝土梁的变形随时间的延长而增大,持荷前期增大速率较快,然后逐渐降低,后期基本不再变形,趋于稳定。该现象与混凝土、环氧树脂胶在相应应力水平下的蠕变规律相似。加固对梁瞬时变形的降低效果比较明显,但对长期附加变形的降低效应不明显,其主要原因是环氧树脂胶的剪切蠕变引起外部FRP应力松弛,导致产生附加变形。基于正截面受力分析,可对粘贴FRP加固梁的长期行为开展理论分析与计算,但对胶层的剪切蠕变特性缺乏有效考虑。
对材料蠕变行为的充分认识是对结构蠕变行为进行合理分析的基础。本文首先从材料层次上综述各材料组分(混凝土、环氧树脂胶、FRP)蠕变特性的研究进展。实际工程中,结构长期承受的是正常使用荷载,在该荷载水平下,钢筋应力低于屈服强度,可视为线弹性材料,其蠕变行为可适当忽略,该观点在结构工程领域被广泛认同,因此,本文不再总结钢筋的蠕变行为研究。然后从结构层次上综述粘贴FRP加固混凝土梁的蠕变特性研究进展,分为试验研究、理论分析两方面。试验研究方面主要综述长期试验的开展方法和相关试验现象及结论,理论分析方面主要综述结构长期变形的计算方法。最后,本文总结目前研究存在的问题,为今后的进一步研究工作提供建议与参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚未来
江世永
蔡涛
龚宏伟
陶帅
关键词:  纤维增强复合材料  粘贴加固  蠕变性能  长期效应    
Abstract: Due to the excellent performance of fiber-reinforced polymers (FRP) and ease of application, the techniques of strengthening concrete structures by externally bonding FRP had been widely applied in actual projects (e.g., structural modification, repairing, reinforcement and seismic retrofit), since the end of the last century. FRP presents low density, well corrosion-resistant and high strength. Recently, FRP has been more generally used since the material compensate is further declined. It should be noted that the service time of building structures is long. After strengthening, the strengthened structures still suffer sustained loads for long-period of time. However, so far, the long-term performance of strengthened structures under sustained load has not been fully explored. The practical strengthening designs do not consider the creep effects. To the actual fact that the strengthening techniques of bonding FRP externally have been already widely used, it is needed to further investigate the creep response of FRP-strengthened concrete structures.
Under sustained load, the long-term deformation of FRP-strengthened structure increases with time, along with complicated stress redistribution occurs in structure. These phenomena are basically caused by the creep behaviors of materials. Researches on the time-dependent properties of concrete had been carried out long before. Up to now, there is relatively adequate understan-ding for the shrinkage and uniaxial compressive creep of concrete, and some generally accepted models worldwide are recommended to theoretically describe such behavior. Researches show epoxy resin, which is used as adhesive to bond FRP on concrete exhibits evident creep performance. Higher environmental temperature and relative humidity increase the creep deformation of adhesive, which may even induce creep fracture. Experimental researches and numerical studies have demonstrated that the viscous flow of epoxy leads to obvious relaxation of interfacial stress. The CFRP and GFRP used for structural strengthening present ignorable creep performance, which has been validated by tests.
For the increasing of deformation of FRP-strengthened concrete structure under sustained load, the increasing rate is high in the earlier stage, but gradually reduces in the later stage, which is basically in consistent with the creep law of concrete and epoxy resin. Strengthening has evident effect on reducing the instantaneous deformation, whereas, its effect on reducing the long-term deformation is comparatively not pronounced. The believed reason is that the shear creep of adhesive relieves the stress in FRP, which degrades the strengthening effects and causes additional deformation. Based on cross section analysis, the long-term performance of FRP-strengthened concrete beams can be theoretically investigated, however, the shear creep of adhesive cannot be properly taken into account.
Reasonable discussion on the time-dependent behavior of FRP-strengthened structures fundamentally dependents on the adequate understan-ding of the creep response of materials. Thus, this paper first review the research progress on the creep behaviors of concrete, epoxy adhesive and FRP. It is noteworthy that in actual engineering projects, the sustained load for structure is service load. Under such level of load, the stress in steel is lower than the yield strength, which can be considered as linear elastic materials, hence the creep of steel can be reasonably neglected. Therefore, this paper no longer addresses the creep behavior of steel. Afterwards, the recent study progress on the time-dependent response of FRP-strengthened concrete beam is reviewed in the aspects of experimental study and theoretical analysis. The reviewed experimental studies cover the methods, phenomena and conclusions of long-term test. The reviewed theoretical analyses mainly include the methods for calculating the long-term deformation. Finally, the problems of existed studies are concluded, and the suggestions for further researches are presented.
Key words:  fiber-reinforced polymers (FRP)    paste reinforcement    creep behavior    long-term response
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TU375.1  
基金资助: 重庆市高校优秀成果转化资助重点项目(KJZH14220);重庆市科委科技攻关重点项目(CSTC2011AB0043)
作者简介:  姚未来,2013年6月毕业于重庆大学,获工学学士学位。现为中国人民解放军陆军勤务学院军事设施系在读博士研究生,在江世永教授的指导下开展研究工作。目前主要从事纤维复合材料加固混凝土结构的长期性能研究。
江世永,陆军勤务学院、重庆交通大学土木工程学院教授,博士研究生导师。1994年毕业于同济大学,获工学博士学位。国家科技进步奖、自然科学基金评委,美国土木工程师学会会员,重庆市学术技术带头人,全国建筑物鉴定与加固技术委员会常务理事,重庆市建筑物鉴定与加固技术委员会副主任委员。主要从事结构检测、鉴定、加固方面及水泥基复合材料研究,在复合纤维材料在土木工程中的应用方面取得突出成绩。近年来,先后利用预应力技术解决了碳纤维布加固混凝土结构效果不明显以及材料得不到充分利用的问题,利用纤维筋在混凝土结构中解决了特殊军事结构的电磁干扰、耐腐蚀问题,在国内外取得较大影响。
引用本文:    
姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
YAO Weilai, JIANG Shiyong, CAI Tao, GONG Hongwei, TAO Shuai. Research Progress on Creep Response of FRP-strengthened Reinforced Concrete Beams. Materials Reports, 2019, 33(17): 2890-2901.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100193  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2890
1 Hu D. <i>Creep response of concrete structures</i>, Science Press, China, 2015 (in Chinese).<br />
胡狄. 混凝土结构徐变效应理论, 科学出版社, 2015.<br />
2 Teng J G, Chen J F, Smith S T. <i>FRP strengthened RC structures, 2nd Edition</i>, John Wiley & Sons, UK, 2016.<br />
3 Aboubakr S H, Kandil U F, Taha M R. <i>International Journal of Adhesion & Adhesives</i>, 2014, 54(5), 1.<br />
4 Jeong Y, Lee J, Kim W S. <i>Materials</i>, 2015, 8(2), 435.<br />
5 Jeong Y, Lopez M M, Bakis C E. <i>Construction & Building Materials</i>, 2016, 124(4), 42.<br />
6 Costa I, Barros J. <i>International Journal of Adhesion & Adhesives</i>, 2015, 59(1), 15.<br />
7 Ferrier E, Michel L, Jurkiewiez B, et al. <i>Construction and Building Materials</i>, 2011, 25(2), 461.<br />
8 Neville A M, Dilger W H, Brooks J J. <i>Creep of plain and structural concrete</i>, Construction Press, United States, 1983.<br />
9 Huang G X, Hui R Y, Wang X J. <i>Creep and shrinkage of concrete</i>, China Electric Power Press, China, 2012 (in Chinese).<br />
黄国兴, 惠荣炎, 王秀军. 混凝土徐变与收缩, 中国电力出版社, 2012.<br />
10 Gardner N J, Lockman M J. <i>ACI Materials Journal</i>, 2002, 98(2), 159.<br />
11 Ba ant Z P, Baweja S. <i>Materials & Structures</i>, 1995, 28(6), 357.<br />
12 CEB-FIP. <i>CEB-FIP model code 2010</i>, Ernst & Sohn Publishing House, Germany, 2013.<br />
13 ACI Committee 209. <i>Prediction of creep, shrinkage, and temperature effects in concrete structures</i>, American Concrete Institute, United States, 2002.<br />
14 Zhu B F. <i>Journal of Hydraulic Engineering</i>, 1985(9), 56 (in Chinese).<br />
朱伯芳. 水利学报, 1985(9), 56.<br />
15 Goel R, Kumar R, Paul D K. <i>Journal of Materials in Civil Engineering</i>, 2007, 19(3), 249.<br />
16 Beeby A W, Scott R H. <i>Magzine of Concrete Research</i>, 2006, 58(5), 255.<br />
17 Ahmed, Abualwafa K T. Long term deflection of high-performance reinforced concrete beam. Ph.D. Thesis, University of Leeds, United Kingdom, 2013.<br />
18 Higgins L, Forth J P, Neville A, et al. <i>Engineering Structure</i>, 2013, 56(6), 457.<br />
19 Rossi P, Tailhan J L, Maou F L, et al. <i>Cement & Concrete Research</i>, 2012, 42(1), 61.<br />
20 Ranaivomanana N, Multon S, Turatsinze A. <i>Cement & Concrete Research</i>, 2013, 52(10), 1.<br />
21 Forth J P. <i>Cement & Concrete Composites</i>, 2015, 55, 70.<br />
22 Rossi P, Tailhan J L, Lemaou F. <i>Cement & Concrete Research</i>, 2013, 51, 78.<br />
23 Ranaivomanana N, Multon S, Turatsinze A. <i>Construction & Building Materials</i>, 2013, 38, 173.<br />
24 Chen B S, Chen S, Wang Y, et al.<i>Materials Review B: Research Papers</i>, 2017, 31(6), 149 (in Chinese).<br />
陈邦尚, 陈松, 王岩, 等. 材料导报:研究篇, 2017, 31(6), 149.<br />
25 Reviron N, Nahas G, Tailhan J L, et al. In: Proceedings of the 8th International Conference on Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures. Shima, Japan, 2009.<br />
26 Aili A, Vandamme M, Torrenti J M, et al. <i>Cement & Concrete Research</i>, 2016, 90, 144.<br />
27 Gopalakrishnan K S, Neville A M, Chali A. <i>ACI Journal & Proceedings</i>, 1969.<br />
28 Meyer I H. <i>Matériaux Et Construction</i>, 1969, 2(2), 125.<br />
29 Aili A, Vandamme M, Torrenti J M, et al. <i>Mechanics of Time-Dependent Materials</i>, 2015, 19(4), 537.<br />
30 Aili A, Vandamme M, Torrenti J M, et al. In: Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Massachusetts, 2015, pp. 1219.<br />
31 Charpin L, Sanahuja J. <i>International Journal of Solids & Structures</i>, 2017, 110, 2.<br />
32 Sellier A, Multon S, Buffo R L, et al. <i>Cement & Concrete Research</i>, 2016, 79(1), 301.<br />
33 Charpin L, Pape Y L, Coustabeau, et al. <i>Cement & Concrete Research</i>, 2017, 103, 140.<br />
34 Kim J K, Kwon S H, Kim Y Y. <i>Magzine of Concrete Research</i>, 2006, 58(1), 9.<br />
35 Ladaoui W, Vidal T, Sellier A, et al. <i>Materials & Structures</i>, 2011, 44(9), 1629.<br />
36 Luo J L. Experimental study on the time-dependent effects of shrinkage, creep and temperature on PC box girder bridge in high-speed railway. Ph.D. Thesis, Central South University, China,2014 (in Chinese).<br />
罗俊礼. 高速铁路预应力箱梁收缩徐变和温度时变效应试验研究. 博士学位论文, 中南大学, 2014.<br />
37 Rao R, Zhang Z, Gan Q, et al. <i>Materials Research Innovations</i>, 2015, 19(S2), 174.<br />
38 Ba ant Z P, Yu Q, Li G H, et al. <i>Journal of Structure Engineering</i>, 2012, 138(6), 676.<br />
39 Vidal T, Sellier A, Ladaoui W, et al. <i>Journal of Materials in Civil Engineering</i>, 2015, 27(7), B4014002.<br />
40 Tabatabai H, Oesterle R G. <i>Magzine of Concrete Research</i>, 2017, 69(24), 1243.<br />
41 Yang Y Q, Lu W W, Li X B, et al.<i>Journal of Southwest Jiaotong University</i>, 2015, 50(6), 977.<br />
杨永清, 鲁薇薇, 李晓斌, 等. 西南交通大学学报, 2015, 50(6), 977.<br />
42 Wang Y B, Jia Y, Liao P, et al.<i>Journal of the China Railway Society</i>, 2018, 40(7), 100.<br />
王永宝, 贾毅, 廖平, 等. 铁道学报, 2018, 40(7), 100.<br />
43 Brinson H F. <i>Polymer engineering science and viscoelasticity</i>, Springer, United States, 2008.<br />
44 Zehsaz M, Vakili-tahami F, Saeimi-sadigh M A. <i>Journal of Strain Analysis for Engineering Design</i>, 2014, 50(1), 4.<br />
45 Dean G. <i>International Journal of Adhesion & Adhesives</i>, 2007, 27(8), 636.<br />
46 Feng C W, Keong C W, Hsueh Y P, et al. <i>International Journal of Adhesion & Adhesives</i>, 2005, 25(5), 427.<br />
47 Diab H, Wu Z. <i>Composites Part B</i>, 2008, 39(4), 722.<br />
48 Mazzotti C, Savoia M. <i>Advances in Structure Engineering</i>, 2009, 12(5), 651.<br />
49 Emara M, Torres L, Baena M, et al. <i>Composites Part B</i>, 2017, 129, 88.<br />
50 Houhou N, Benzarti K, Quiertant M, et al. <i>Journal of Adhesion Science & Technology</i>, 2014, 28(14), 1345.<br />
51 Choi K K, Meshgin P, Taha M R. <i>Composites Part B</i>, 2007, 38(5), 772.<br />
52 Zhang C, Wang J. <i>Composite Structures</i>, 2011, 93(12), 3200.<br />
53 Choi K K, Taha M M R. <i>Journal of Adhesion Science & Technology</i>, 2013, 27(5), 523.<br />
54 Jeong Y, Lee J, Kim W. <i>Materials</i>, 2015, 8(2), 435.<br />
55 Rathore D K, Prusty R K, Mohanty S C, et al. <i>Mechanics of Materials</i>, 2017, 105, 99.<br />
56 Ascione L, Berardi V P, Daponte A. <i>Mechanics Research Communications</i>, 2012, 43, 15.<br />
57 Ascione F, Berardi V P, Feo L, et al. <i>Composites Part B</i>, 2008, 39(7), 1147.<br />
58 Maksimov R D, Plume E. <i>Mechanics of Composite Materials</i>, 2001, 37(4), 271.<br />
59 Najafabadi E P, Bazli M, Ashrafi H, et al. <i>Construction and Building Materials</i>, 2018, 171, 960.<br />
60 Boscato G, Casalegno C, Russo S. <i>Mechanics of Composite Materials</i>, 2016, 52(1), 27.<br />
61 Bottoni M, Mazzotti C, Savoia M. <i>Composite Structures</i>, 2014, 108(108), 514.<br />
62 Findley W N. <i>Society of Plastic Engineering Journal</i>, 1960, 16(1), 57.<br />
63 Jeon J, Kim J, Muliana A. <i>Computational Materials Science</i>, 2013, 70, 37.<br />
64 Tan K H, Saha M K. <i>Journal of Composites for Construction</i>, 2006, 10(6), 474.<br />
65 Tanks J, Rader K, Sharp S, et al. <i>Composite Structures</i>, 2017, 159, 455.<br />
66 Hong S, Park S K. <i>Composite Structures</i>, 2016, 152, 140.<br />
67 Kim S H, Han K B, Kim K S, et al. <i>Composites Part B</i>, 2009, 40(4), 292.<br />
68 Hamed E, Chang Z T. <i>Composites Science & Technology</i>, 2013, 74, 186.<br />
69 Sobuz H R, Ahmed E, Sutan N M, et al. <i>Construction & Building Mate-rials</i>, 2012, 29(29), 597.<br />
70 El-sayed A K, Al-zaid R A, Al-negheimish A I, et al. <i>Construction and Building Materials</i>, 2014, 51, 473.<br />
71 Muller M, Toussaint E. <i>Composites Part B</i>, 2007, 38(4), 417.<br />
72 Chami G A, Thriault M, Neale K W. <i>Construction & Building Materials</i>, 2009, 23(4), 1640.<br />
73 Choi K K, Taha M M R, Masia M J, et al. <i>Journal of Composites for Construction</i>, 2010, 14(6), 812.<br />
74 Yahyaei-moayyed M, Taheri F. <i>Composite Structures</i>, 2011, 93(2), 616.<br />
75 Al-sunna R, Pilakoutas K, Hajirasouliha I, et al. <i>Composites Part B</i>, 2012, 43(5), 2125.<br />
76 Kim V J, Khan F. <i>ACI Structure Journal</i>, 2015, 112(4), 493.<br />
77 Chan B, Xiao Y. <i>Natrual Science Journal of Xiantan University</i>, 2008, 30(4), 75 (in Chinese).<br />
单波, 肖岩. 湘潭大学自然科学学报, 2008, 30(4), 75.<br />
78 Shan B. Long-term behavior of FRP-strengthened concrete colums subjected to earthquake damage. Ph.D. Thesis, Hunan University, China,2006 (in Chinese).<br />
单波. FRP加固钢筋混凝土柱考虑地震及使用损伤的长期性能和修复. 博士学位论文, 湖南大学, 2006.<br />
79 Zhang D J. A plasticity model for FRP confined concrete including creep effects. Ph.D. Thesis, Beijing Jiaotong University, China,2013 (in Chinese).<br />
张电杰. 考虑徐变效应的FRP约束混凝土塑性模型研究. 博士学位论文, 北京交通大学, 2013.<br />
80 Han C X. Theoritical and experimental research on creep and shrinkage effect of steel and concrete composite beams. Ph.D. Thesis, Kunming University of Science and Technology, China, 2016 (in Chinese).<br />
韩春秀. 钢—混凝土组合梁徐变和收缩效应的理论与试验研究. 博士学位论文, 昆明理工大学, 2016.<br />
81 Taha M M R, Masia M J, Choi K K, et al. <i>ACI Structure Journal</i>, 2010, 107(6), 627.<br />
82 Jiang S Y, Yao W L, Chen J, et al. <i>Composite Structures</i>, 2018, 200, 599.<br />
83 Jiang S Y, Cai T, Yao W L, et al.<i>Fiber Reinforced Plastics/Composites</i>, 2018(6), 28.<br />
江世永, 蔡涛, 姚未来, 等. 玻璃钢/复合材料, 2018(6), 28.<br />
84 Mari A R, Oller E, Bair N J M, et al. <i>Composites Part B</i>, 2013, 45(1), 1368.<br />
85 Mari A R, Bair N J M, Duarte N. <i>Engineering Structure</i>, 2010, 32(3), 829.<br />
86 Torres L, Mi S C, Turon A, et al. <i>Engineering Structure</i>, 2012, 40(7), 230.<br />
87 ACI Committee 318. <i>Building code requirements for structural concrete and commentary</i>, American Concrete Institute, United States, 2014.<br />
88 Hamed E, Bradford M A. <i>European Journal of Mechanics-A/Solids</i>, 2010, 29(6), 951.<br />
89 Hamed E, Bradford M A. <i>International Journal of Solids & Structures</i>, 2012, 49(13), 1595.<br />
90 Hadjazi K, Sereir Z, Amziane S. <i>International Journal of Solids & Structures</i>, 2016, 94, 196.<br />
91 Teng J G, Zhang J W, Smith S T. <i>Construction & Building Materials</i>, 2002, 16(1), 1.<br />
92 Meshgin P, Choi K K, Taha M M R. <i>International Journal of Adhesion & Adhesives</i>, 2009, 29(1), 56.<br />
93 Chen G M. Behaviour and strength of RC beams shear-strengthened with externally bonded FRP reinforcement. Ph.D. Thesis, Hong Kong Polytechnic University,China, 2010.<br />
94 Chen G M, Teng J G, Chen J F. <i>Journal of Composites for Construction</i>, 2010, 15(3), 339.<br />
[1] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[2] 黄展鸿, 黄春芳, 张鉴炜, 江大志, 鞠苏. 声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1122-1128.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed