Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15063-15068    https://doi.org/10.11896/cldb.19080114
  无机非金属及其复合材料 |
锂离子电池用石墨类负极材料结构调控与表面改性的研究进展
邢宝林1,2, 鲍倜傲1, 李旭升1,2, 史长亮1,2, 郭晖2, 王振帅1, 侯磊1, 张传祥1,2, 岳志航1
1 河南理工大学化学化工学院,河南省煤炭绿色转化重点实验室,焦作 454000
2 煤炭安全生产河南省协同创新中心,焦作 454000
Research Progress on Structure Regulation and Surface Modification of Graphite Anode Materials for Lithium Ion Batteries
XING Baolin1,2, BAO Ti'ao1, LI Xusheng1,2, SHI Changliang1,2, GUO Hui2, WANG Zhenshuai1, HOU Lei1, ZHANG Chuanxiang1,2, YUE Zhihang1
1 Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
2 Collaborative Innovation Center of Coal Work Safety, Jiaozuo 454000, China
下载:  全 文 ( PDF ) ( 3070KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池作为新一代绿色能量储存和转换装置,具有广阔的应用前景和巨大的经济价值。负极材料是锂离子电池的核心部件之一,其结构和性质对电池的性能起着关键性作用。在众多碳基负极材料中,石墨类材料是目前商业化锂离子电池中应用最广的负极材料。但石墨类负极材料存在可逆容量较低、离子扩散动力学和电解液兼容性较差、体积膨胀率较高等问题,导致锂离子电池的能量密度、大电流倍率性能及循环稳定性等受到严重限制。尤其是近年来新能源汽车对续航里程和快速充放电能力的需求不断提高,使得石墨类负极材料在能量密度与功率密度方面的缺陷日渐凸显。
为改善现有石墨类负极材料某些方面的缺陷,提高其综合性能,研究者们主要从石墨类负极材料的表面包覆、化学修饰、元素掺杂和微晶结构优化等角度进行了广泛探究,并取得了丰硕的成果。主要体现在:(1)表面包覆,构筑核壳结构,改善负极材料与电解液的兼容性;(2)化学修饰,调控界面化学性质,增强负极材料表面SEI膜(电极/电解液界面膜)的稳定性;(3)元素掺杂,调节石墨微晶表面的电子状态和导电性,强化负极材料的嵌-脱锂行为;(4)微晶结构优化,修筑三维(3D)梯级纳米孔道,改善锂离子的传输路径,提高负极材料的储能容量和倍率性能。
本文简要介绍了锂离子电池的工作原理和其对石墨类负极材料的要求,重点综述了石墨类负极材料在结构调控与表面改性等方面的最新研究进展,并对石墨类负极材料的未来发展趋势进行了展望,以期为高性能锂离子电池用新型碳基负极材料的研发与推广应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢宝林
鲍倜傲
李旭升
史长亮
郭晖
王振帅
侯磊
张传祥
岳志航
关键词:  锂离子电池  电极材料  石墨类负极材料  结构调控  表面改性    
Abstract: Lithium ion batteries (LIBs), which are new generation of green energy storage and conversion devices, have wide application and huge economic value. The performance of LIBs is determined by many factors with one of them being the type of anode material. Specifically, the microstructure and surface properties of the anode play a significant role in determining the performance for the battery. Among all reported carbon-based anode materials, graphite materials are the most widely used for commercial LIBs. However, the inherent disadvantages of graphite anode materials such as low reversible capacity, poor ion diffusion dynamics and electrolyte compatibility as well as high volume expansion prevent further improvement on the energy density, high current multiplier performance and cycle stability for LIBs.
Therefore, it is desirable to improve the properties of graphite anode materials in order to produce high performance LIBs. Many research efforts have been made to modify the graphite anode through surface coating, chemical modification, element doping and microcrystalline structure optimization. The main methods are: ⅰ. using surface coating to build core-shell construction, and improve the compatibility between anode mate-rials and electrolyte; ⅱ. using chemical modification to control interface chemical properties, enhance the stability of SEI film (electrode/electrolyte interface film) on the surface of negative electrode material; ⅲ. doping other element in materials to adjust the electronic state and electrical conductivity of graphite microcrystalline surface, and strengthen the behavior of lithium-ion's intercalation and deintercalation of anode materials; ⅳ. optimizing microcrystalline structure to build 3D cascade nanometer channels, improve the transmission path of lithium ions, and improve the energy storage capacity and rate capability of anode materials.
In this paper, the current research status and development of graphite anode materials in structural regulation and surface modification are reviewed and the development trend of such anode materials is prospected. This short review is expected to provide some guidance for the development of new carbon-based anode materials, particularly graphite based materials, for high-performance LIBs.
Key words:  lithium battery    electrode materials    graphite anode materials    structure regulation    surface modification
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TB34  
  TM911  
基金资助: 国家自然科学基金(51974110; U1803114);河南省重点科技攻关项目(202102210183);河南省高校基本科研业务费专项资金项目(NSFRF180313);河南省高校青年骨干教师项目(2017GGJS052);河南省教育厅高校重点科研项目(19A440002);国家级大学生创新创业训练计划项目(201910460033; 201810460018)
通讯作者:  baolinxing@hpu.edu.cn;scl303@126.com   
作者简介:  邢宝林,河南理工大学化学化工学院教授、博士研究生导师。2011年12月在河南理工大学矿物加工工程专业取得博士学位,2014—2015年在澳大利亚纽卡斯尔大学作访问学者,2017—2019年在郑州大学进行博士后研究工作。主要从事功能炭材料研发与应用和矿产资源综合利用等方面的研究,发表论文60余篇。
史长亮,河南理工大学化学化工学院副教授、硕士研究生导师。2013年6月在河南理工大学矿物加工工程专业取得博士学位,2019年至今在多氟多化工股份有限公司进行博士后研究工作,主要从事矿产资源综合利用及废弃动力锂电池资源化利用等方面的研究,发表论文20余篇。
引用本文:    
邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
XING Baolin, BAO Ti'ao, LI Xusheng, SHI Changliang, GUO Hui, WANG Zhenshuai, HOU Lei, ZHANG Chuanxiang, YUE Zhihang. Research Progress on Structure Regulation and Surface Modification of Graphite Anode Materials for Lithium Ion Batteries. Materials Reports, 2020, 34(15): 15063-15068.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080114  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15063
1 Zubi G, Dufo-López R, Carvalho M, et al. Renewable and Sustainable Energy Reviews, 2018, 89, 292.2 Tan Y, Wang K. Journal of Inorganic Materials. 2019,34(4), 349(in Chinese).谭毅, 王凯. 无机材料学报, 2019, 34(4), 349.3 Lu Y, Yu L, Lou X W. Chem, 2018, 4(5), 972.4 Goriparti S, Miele E, De Angelis F, et al. Journal of Power Sources, 2014, 257, 421.5 Han F, Lu A H, Li W C, et al. Progress in Chemistry, 2012, 24(12), 2443 (in Chinese). 韩飞, 陆安慧, 李文翠.化学进展, 2012, 24(12), 2443.6 Shi J, Liu Q, Zang H Y, et al. New Chemical Materials, 2019, 47(1), 42 (in Chinese). 时杰, 刘庆, 臧浩宇, 等.化工新型材料, 2019, 47(1), 42.7 Yu Y L. Improved performance of silicon-based anode materials for Li-ion batteries by buffer structure design. Ph.D. Thesis, Beijing University of Chemical Technology, China, 2018 (in Chinese).于永利. 基于缓冲结构设计改善锂离子电池硅基负极材料电化学性能的研究. 博士学位论文, 北京化工大学, 2018.8 Yan L J. Synthesis and electrochemical properties of silicon based mate-rials as anodes for lithium-ion batteries. Ph.D. Thesis, Zhejiang University, China, 2018(in Chinese). 严立京. 锂离子电池硅基负极材料制备及其电化学性能研究. 博士学位论文, 浙江大学, 2018.9 Zuo L. The preparation and performance of porous carbon and carbon composite as lithium ion battery anodes. Master's Thesis, Jiangxi Normal University, China, 2015 (in Chinese).左莉. 多孔碳材料以及碳复合物负极材料的制备及锂离子电池性能的研究. 硕士学位论文, 江西师范大学, 2015.10 De Las Casas C, Li W. Journal of Power Sources, 2012, 208, 74.11 Li H, Zhou H. Chemical Communications, 2012, 48(9), 1201.12 Nozaki H, Nagaoka K, Hoshi K, et al. Journal of Power Sources, 2009, 194(1), 486.13 Zou L, Kang F, Zheng Y, et al. Electrochimica Acta, 2009, 54(15), 3930.14 Wang C, Zhao H, Wang J, et al. Ionics, 2013, 19(2), 221.15 Liu S, Ying Z, Wang Z, et al. New Carbon Materials, 2008, 23(1), 30.16 Han H, Park H, Kil K C, et al. Electrochimica Acta, 2015, 166, 367.17 Lin Y, Huang Z, Yu X, et al. Electrochimica Acta, 2014, 116, 170.18 Zhao Z, Jia X C, Li J, et al. New Carbon Materials, 2013, 28(5), 385 (in Chinese). 赵琢, 贾晓川, 李晶, 等.新型炭材料, 2013, 28(5), 385.19 Guérin K, Dubois M, Houdayer A, et al. Journal of Fluorine Chemistry, 2012, 134, 11.20 Lee C, Han Y, Seo Y D, et al. Carbon, 2016, 103, 28.21 Abdelkader-Fernández V K, Morales-Lara F, Melguizo M, et al. Applied Surface Science, 2015, 357, 1410.22 Shim J, Striebel K A. Journal of Power Sources, 2007, 164(2), 862.23 Ma Z H. Surface modification of nature graphite for anode of Lithium-ion battery. Master's Thesis, Henan Normal University, China, 2011 (in Chinese).马志华. 天然石墨负极材料表面改性研究. 硕士学位论文, 河南师范大学, 2011.24 Fu L J, Liu H, Li C, et al. Solid State Sciences, 2006, 8(2), 113.25 Lin Y, Huang Z, Yu X, et al. Electrochimica Acta, 2014, 116, 170.26 Guérin K, Dubois M, Houdayer A, et al. Journal of Fluorine Chemistry, 2012, 134, 11.27 Matsumoto K, Li J, Ohzawa Y, et al. Journal of Fluorine Chemistry, 2006, 127(10), 1383.28 Abdelkader-Fernández V K, Morales-Lara F, Melguizo M, et al. Applied Surface Science, 2015, 357, 1410.29 Lee C, Han Y, Seo Y D, et al. Carbon, 2016, 103, 28.30 Nakajuma T. In: Advanced Fluoride-based materials for energy conversion. Netherlands, 2015, pp. 203.31 Chen J, Xu H. Materials Review A:Review Papers, 2017, 31(5), 36 (in Chinese).陈坚, 徐晖. 石材料导报:综述篇, 2017, 31(5), 36.32 Bloom I, Dietz Rago N, Sheng Y, et al. Journal of Power Sources, 2019, 432, 73.33 Kim J G, Liu F, Lee C, et al. Solid State Sciences, 2014, 34, 38.34 Liu C, Liu X, Tan J, et al. Journal of Power Sources, 2017, 342, 157.35 Zhou Y, Zeng Y, Xu D, et al. Electrochimica Acta, 2015, 184, 24.36 Bai A, Wang L, Li J, et al. Journal of Power Sources, 2015, 289, 100.37 Li Y, Chang B, Li T, et al. Electrochemistry Communications, 2016, 72, 69.38 Zhang Y, Jiang Y, Li Y, et al. Journal of Power Sources, 2015, 281, 425.39 Zhang T L, Wang C M, Song Z H, et al. Advanced Ceramics, 2014, 35(5), 5 (in Chinese). 张田丽, 王春梅, 宋子会.现代技术陶瓷, 2014, 35(5), 5.40 Zhu K, Qi H, Sun X, et al. Electrochimica Acta, 2019, 299, 853.41 Goriparti S, Miele E, De Angelis F, et al. Journal of Power Sources, 2014, 257, 421.42 Trifonova A, Winter M, Besenhard J O. Journal of Power Sources, 2007, 174, 800.43 Xu K S. The preparation and impoved characteristics of silicon carbon composite materials for Lithium ion batteries. Master's Thesis, Harbin Institute of Technology, China, 2011 (in Chinese).许可松. 锂离子电池硅碳复合材料的制备及改性研究. 硕士学位论文, 哈尔滨工业大学, 2011.44 Tao T, He L, Li J, et al. Journal of Alloys and Compounds, 2014, 615, 1052.45 Wang X, Wen Z, Lin B, et al. Journal of Power Sources, 2008, 184(2), 508.46 Wang Y, Yang L, Hu R, et al. Electrochimica Acta, 2014, 125, 421.47 Jin B, Liu A, Liu G, et al. Electrochimica Acta, 2013, 90, 426.48 Zou Z, Jiang C. Journal of Materials Science & Technology, 2019, 35(4), 644.49 Han F. Design of porous carbon-modified hybrid anodes and its electrochemical performance for Lithium ion batteries. Ph.D. Thesis, Dalian University of Technology, China, 2014 (in Chinese).韩飞. 炭修饰锂离子电池负极材料的设计及性能研究.博士学位论文,大连理工大学, 2014. 50 Huang S, Li Z, Wang B, et al. Advanced Functional Materials, 2018, 28(10), 1706294.51 Tian M, Wang W, Liu Y, et al. Nano Energy, 2015, 11, 500.52 Zheng C, Hu X, Sun X, et al. Electrochimica Acta, 2019, 306, 339.53 Yue X, Sun W, Zhang J, et al. Journal of Power Sources, 2016, 331, 10.54 Ni L, Wang R, Wang H, et al. Microporous and Mesoporous Materials, 2019, 282, 197.55 Cuesta N, Cameán I, Ramos A, et al. Electrochimica Acta, 2016, 222, 264.56 Hu Y S, Adelhelm P, Smarsly B M, et al. Advanced Functional Mate-rials, 2007, 17(12), 1873.57 Xing B L, Zhang C X, Cao Y J, et al. Fuel Processing Technology, 2018, 172, 162.58 Canal-Rodríguez M, Arenillas A, Menéndez J A, et al. Carbon, 2018, 137, 384.59 Shi M R, Li M Y, Duan X C, et al. Chinese Journal of Power Sources, 2011, 35(11), 1346 (in Chinese). 石美荣, 李孟元, 段兴潮, 等.电源技术, 2011, 35(11), 1346.60 Xing B L, Zhang C X, Liu Q R, et al. Journal of Alloys and Compounds, 2019, 795, 91.61 Wang Z, Zhang F, Lu Y, et al. Materials Research Bulletin, 2016, 83, 590.62 Kakunuri M, Sharma C S. Electrochimica Acta, 2015, 180, 353.63 Ma H F, Jiang H, Jin Y, et al. Carbon, 2016, 105, 586.64 Zhang H, Sun X, Zhang X, et al. Journal of Alloys and Compounds, 2015, 622, 783.65 Shan H, Xiong D, Li X, et al. Applied Surface Science, 2016, 364, 651.
[1] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[2] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[3] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[4] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[5] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[6] 吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
[7] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[8] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[9] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[10] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[11] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[12] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[13] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[14] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[15] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed