Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6008-6014    https://doi.org/10.11896/cldb.20010110
  无机非金属及其复合材料 |
溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响
陈瑞芳1, 曲雯雯1,2,3, 王一钧1, 马保挎1, 陈尚民1
1 昆明理工大学理学院,昆明 650500
2 昆明理工大学微波能工程应用及装备技术国家地方联合工程实验室,昆明 650093
3 昆明理工大学非常规冶金省部共建教育部重点实验室,昆明 650093
Effect of Solvents on Morphology and Photocatalytic Performance of Bi2WO6/RGO
CHEN Ruifang1, QU Wenwen1,2,3, WANG Yijun1, MA Baokua1, CHEN Shangmin1
1 Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
2 National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, China
3 The Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 10531KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用溶剂热法通过乙二醇、乙二胺、水-乙二醇、水-乙二胺、水和水-乙酸不同溶剂制备可见光催化剂Bi2WO6/RGO,并对其形貌结构和光催化性能进行表征。研究结果表明,溶剂对Bi2WO6/RGO的形貌和光催化性能有显著影响。在可见光(λ>420 nm)照射下,以水为溶剂制备的样品对罗丹明B(RhB)的光催化降解性能最佳,20 min内降解率达到98%,且经过五次循环降解后光催化效果基本保持不变。Bi2WO6/RGO的光催化性能增强可归因于在水溶剂下形成的Bi2WO6分级结构微球为光催化反应提供更多的反应活性位点,同时石墨烯的引入增大了材料的比表面积,进一步促进了电子-空穴对的有效分离。自由基捕获实验表明,复合材料光降解RhB过程中光生空穴(h+)起主要作用,·O2-和·OH起次要作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈瑞芳
曲雯雯
王一钧
马保挎
陈尚民
关键词:  钨酸铋/石墨烯  溶剂热法  罗丹明B  光催化    
Abstract: Aseries of visible-light-driven Bi2WO6/RGO photocatalysts were prepared by solvothermal processes with different kinds of solvents including ethylene glycol, ethylene diamine, deionized water-ethylene glycol, deionized water-ethylene diamine, deionized water and deionized water-aceticacid. The morphology, structure and photocatalytic performance of the obtained samples were characterized and analyzed. The results show that solvents have a great influence on the morphology and photocatalytic activity of Bi2WO6/RGO photocatalysts. Under visible light irradiation (λ>420 nm), the photocatalytic activities of Bi2WO6/RGO photocatalysts were evaluated by the decomposition of Rhodamine B (RhB). Among them, the sample prepared using deionized water as solvent exhibited the best photocatalytic performance. The degradation rate of RhB reached 98% within 20 minutes, and after five cycles the degradation of RhB remained approximately constant, suggesting the excellent chemical stability of the catalyst. The enhanced photocatalytic activity of Bi2WO6/RGO composite could be attributed to the formation of Bi2WO6 hierarchical microspheres in aqueous solvents, which provide more reactive sites for photocatalytic reactions, and the introduction of graphene increases the specific surface area of the material, further promoting the effective separation of the electron-hole pairs. In addition, trapping experiments of the predominant radical species were conducted, which indicates the photo-generated holes (h+) played a major role in the photodegradation of RhB, and the effect of ·O2- and ·OH on the photodegradation of RhB also cannot be ignored.
Key words:  Bi2WO6/RGO    solvothermal method    Rhodamine B (RhB)    photocatalysis
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TB321  
  O469  
基金资助: 国家自然科学基金(51562018;51004059)
通讯作者:  qwwen77@163.com   
作者简介:  陈瑞芳,2020年6月毕业于昆明理工大学,获得理学硕士学位。主要研究方向为半导体光催化材料的合成及应用。
曲雯雯,昆明理工大学,教授。2006年7月毕业于北京师范大学,物理化学专业博士学位。主要研究方向:复合光催化材料的微波合成、功能材料表界面微观结构与性质的第一性原理模拟以及废催化剂的资源再生利用。
引用本文:    
陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
CHEN Ruifang, QU Wenwen, WANG Yijun, MA Baokua, CHEN Shangmin. Effect of Solvents on Morphology and Photocatalytic Performance of Bi2WO6/RGO. Materials Reports, 2021, 35(6): 6008-6014.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010110  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6008
1 Al-Ahmed A, Mukhtar B, Hossain S, et al. Materials Science Forum,2012,712,25.
2 He R, Xu D, Cheng B, et al. Nanoscale Horizons,2018,3(5),464.
3 Meng X C, Zhang Z S. Journal of Molecular Catalysis A: Chemical,2016,423,533.
4 Naldoni A, Arienzo M D, Altomare M, et al. Applied Catalysis B: Environmental,2013,130-131,239.
5 Kudo A, Hijii S. Chemistry Letters,1999,28,1103.
6 Sun S, Wang W, Zhang L, et al. Journal of Materials Chemistry,2012,22,9244.
7 Huang H, Cao R, Yu S, et al. Applied Catalysis B: Environmental,2017,219,526.
8 Bunpang K, Wisitsoraat A, Tuantranont A, et al. Applied Surface Science,2019,496,143613.
9 Han T Y, Wang X, Ma Y C, et al. Journal of Sol-Gel Science and Technology,2017,82,101.
10 Kása Z, Saszet K, Dombi A, et al. Materials Science in Semiconductor Processing,2018,74,21.
11 Guo J P, Wang J F, Lin L, et al. Materisls Reports,2019,33(Z1),1(in Chinese).
郭继鹏,王敬锋,林琳,等.材料导报,2019,33(专辑33),1.
12 Liu Y, Miao H Y, Tan G Q, et al. Chinese Journal of Inorganic Chemistry,2008,24(11),1772(in Chinese).
刘运,苗鸿雁,谈国强,等.无机化学学报,2008,24(11),1772.
13 Bi J H, Che J G, Wu L, et al. Materials Research Bulletin,2013,48,2071.
14 Ding Y, Zhang Q C, Fang H, et al. Journal of Functional Materials,2015,46(19),19080(in Chinese).
丁益,张奇才,方辉,等.功能材料,2015,46(19),19080.
15 Zhang X H. Industrial Water Treatment,2018,38(7),40(in Chinese).
张相辉.工业水处理,2018,38(7),40.
16 Li G, Chen G, Sun J, et al. Applied Catalysis B: Environmental,2015,163,415.
17 Fu J, Xu Q, Low J, et al. Applied Catalysis B: Environmental,2019,243,556.
18 Zhang F J, Zhu S F, Xie F Z, et al. Separation and Purification Techno-logy,2013,113,1.
19 Peng T, Li K, Zeng P, et al. Journal of Physical Chemistry C,2015,116(43),22720.
20 Yu M Y, Wang L, Qu W W, et al. Materials Reports B: Research Papers,2019,33(5),1602.
余明远,王璐,曲雯雯,等.材料导报:研究篇,2019,33(5),1602.
21 Geim A K. Science,2009,324(5934),1530.
22 Gao P, Liu J, Sun D D, et al. Journal of Hazardous Materials,2013,250,412.
23 Ren J, Li X Y, Xin W P, et al. Materisls Reports A: Review Papers,2020,34(3),05001(in Chinese).
任静,李秀艳,辛王鹏,等.材料导报:综述篇,2020,34(3),05001.
24 Dong S Y, Ding X H, Guo T, et al. Chemical Engineering Journal,2017,316,778.
25 Wang L, Sun B, Wang W, et al. Asla-Pacific Journal of Chemical Engineering,2017,12,121.
26 Sun J, Shen C H, Guo J, et al. Journal of Colloid and Interface Science,2020,588,19.
27 Yang Y, Luo L, Xiao M, et al. Materials Science in Semiconductor Processing,2015,40,183.
28 Wang T, Li C, Ji J, et al. ACS Sustainable Chemistry & Engineering,2014,2,2253.
29 Li H P, Hou W G, Tao X T, et al. Applied Catalysis B Environmental,2015,172,27.
30 Wu J, Duan F, Zheng Y, et al. Journal of Physical Chemistry C,2007,111(34),12866.
31 Yang W J, Ma B, Wang W C, et al. Physical Chemistry Chemical Phy-sics,2013,15(44),19387.
32 Jiang H, Chen M W, Wang T, et al. Acta Physica Sinica,2017,66(10),106801(in Chinese).
蒋晗,陈明文,王涛,等.物理学报,2017,66(10),106801.
33 Sobolev V V, Merzlyakov D A. Journal of Applied Spectroscopy,2016,83,567.
34 Davis E A, Mott N F. Philosophical Magazine,1970,22,903.
35 Li W J, Li D Z, Lin Y M, et al. Physical Chemistry,2012,116,3552.
36 Dong S Y, Ding X H, Guo T, et al. Chemical Engineering Journal,2017,316,778.
[1] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[2] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[3] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[4] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[5] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[6] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[7] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[8] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[9] 胡明玉, 周侠, 李晔, 谭煜秋. TiO2/硅藻土/泥炭藓复合光催化调湿材料研究[J]. 材料导报, 2021, 35(10): 10036-10041.
[10] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[11] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[12] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[13] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[14] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[15] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed