Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6015-6019    https://doi.org/10.11896/cldb.20010007
  无机非金属及其复合材料 |
基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池
索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙
宁夏大学光伏材料重点实验室,银川 750021
A Planar Heterojunction Perovskite Solar Cell Based on Graphene Oxide Hole Transport Layer
SUO Xinlei, LIU Yan, ZHANG Lilai, SU Hang, LI Wan, LI Guolong
Key Laboratory of Photovolatic Materials, Ningxia University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 5988KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钙钛矿太阳能电池中传统空穴传输层Spiro-OMeTAD存在昂贵、易污染环境且制备困难等缺点,本工作采用氧化石墨烯(Graphene oxide,GO)作为空穴传输层,研究了不同浓度GO溶液制备的衬底对器件光电性能的影响。首先,采用旋涂法制备了GO薄膜,通过对分散液浓度的控制获得了不同厚度的GO衬底。其次,制备了结构为ITO/GO/CH3NH3PbI3/PCBM/Ag的平面型器件,对不同GO衬底的器件的光电性能进行表征及对比分析。研究表明:GO衬底缺陷会抑制CH3NH3PbI3晶粒的择优取向生长,形成可诱导CH3NH3PbI3晶粒产生横向聚集的籽晶,从而改善钙钛矿薄膜的成膜性,并增大钙钛矿晶粒尺寸。由浓度为0.25 mg/mL的分散液制备的GO薄膜衬底上生长的钙钛矿晶粒尺寸最大为900 nm。此外,该浓度对应的GO衬底上制备的钙钛矿薄膜的光致发光相对强度峰值为2 000,电荷转移效率相对最高,为52.8%。由该衬底制备的GO基钙钛矿太阳能电池的光电转化效率最高可提升至8.69%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
索鑫磊
刘艳
张立来
苏杭
李婉
李国龙
关键词:  钙钛矿太阳能电池  氧化石墨烯  空穴传输层  晶粒生长    
Abstract: Spiro-OMeTAD is expensive, unfriendly to environment and difficult to be fabricated as it is used as a traditional hole transport material in perovskite solar cells. In this paper, GO is utilized as a replacement of Spiro-OMeTAD. The influence of concentration of the GO dispersed solution on the photoelectric performance of the device was investigated. Primarily, different film thickness is obtained by varying the concentration of the dispersed solution. It was found that GO substrates evidently influence on the perovskite grain size. Furthermore, a planar device was fabricated with a structure of ITO/GO/CH3NH3PbI3/PCBM/Ag. The effect of GO substrate on perovskite solar cell was analyzed by characterizing the photoelectric properties of the devices with different GO substrates. It illustrates that the grain size of perovskite crystal is up to 900 nm if the GO film is fabricated by a dispersion concentration of 0.25 mg/mL. In addition, the peak of PL for the perovskite thin film on the GO substrate is 2 000, and the charge transfer efficiency reaches to 52.8%. GO-based perovskite solar cell is finally optimized, and its photoelectric conversion efficiency (PCE) can be up to 8.69%.
Key words:  perovskite solar cell    GO    hole transport layer    grain growth
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TM914  
基金资助: 国家自然科学基金(61565015);宁夏大学研究生创新项目(GIP2019029)
通讯作者:  liglo@163.com   
作者简介:  索鑫磊,宁夏大学硕士研究生。2014年9月至2018年6月,在陕西科技大学获得光电信息科学技术与工程专业工学学士学位。主要从事有机-无机杂化钙钛矿光电器件界面优化及电荷传输层效率研究。
李国龙,宁夏大学副教授,硕士研究生导师。2001年9月至2008年6月,在吉林大学获得应用物理学理学学士学位和光学工程工学硕士学位,2008年9月至2012年6月,在浙江大学获得测试计量技术及仪器专业工学博士学位,毕业后在宁夏大学任教,2016年至2017年,到美国加州大学洛杉矶分校进行访问。在国内外学术期刊上发表论文10余篇。研究工作主要围绕光学与光电薄膜、有机(钙钛矿)太阳能电池、太阳能电池电极材料,主持包括国家自然科学基金、中科院西部之光项目等。
引用本文:    
索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
SUO Xinlei, LIU Yan, ZHANG Lilai, SU Hang, LI Wan, LI Guolong. A Planar Heterojunction Perovskite Solar Cell Based on Graphene Oxide Hole Transport Layer. Materials Reports, 2021, 35(6): 6015-6019.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010007  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6015
1 Liu M, Johnston M B, Snaith H J. Nature,2013,501(7467),395.
2 Green M A, Ho-Baillie A, Snaith H J. Nature Photonics,2014,8(7),506.
3 Huo C X, Wang Z M, Li X M, et al. Chinese Journal of Lasers,2017,44(7),0703008(in Chinese).
霍成学,王子明,李晓明,等.中国激光,2017,44(7),0703008.
4 Liu Y Z, Cui Y X. Laser & Optoelectronics Progress,2018,55(10),102301(in Chinese).
刘艳珍,崔艳霞.激光与光电子学进展,2018,55(10),102301.
5 Liu Y Z, Li G H, Cui Y X, et al. Laser & Optoelectronics Progress,2019,56(1),010001(in Chinese).
刘艳珍,李国辉,崔艳霞,等.激光与光电子学进展,2019,56(1),010001.
6 Nguyen W H, Bailie C D, Unger E L, et al. Journal of the American Chemical Society,2014,136(31),10996.
7 Salado M, Idigoras J, Calio L, et al. ACS Applied Materials & Interfaces,2016,8(50),34414.
8 Gong G, Zhao N, Li J, et al. Organic Electronics,2016,35,171.
9 Ma S, Zhang H, Zhao N, et al. Journal of Materials Chemistry A,2015,3(23),12139.
10 Gong G, Zhao N, Ni D, et al. Journal of Materials Chemistry A,2016,4(10),3661.
11 Liu D, Kelly T L. Nature photonics,2014,8(2),133.
12 Burschka J, Dualeh A, Kessler F, et al. Journal of the American Chemical Society,2011,133(45),18042.
13 Leijtens T, Lim J, Teuscher J, et al. Advanced Materials,2013,25(23),3227.
14 Tan H, Jain A, Voznyy O, et al. Science,2017,355(6326),722.
15 Chiang C H, Wu C G. Nature Photonics,2016,10(3),196.
16 You J, Meng L, Song T B, et al. Nature Nanotechnology,2016,11(1),75.
17 Ye S, Sun W, Li Y, et al. Nano Letters,2015,15(6),3723.
18 Wang D, Elumalai N K, Mahmud M A, et al. Organic Electronics,2018,53,66.
19 Chen W, Zhang G, Xu L, et al. Materials Today Energy,2016,1,1.
20 Li S S, Tu K H, Lin C C, et al. ACS Nano,2010,4(6),3169.
21 Li D, Cui J, Li H, et al. Solar Energy,2016,131,176.
22 Oh S H, Kim K R, Yun J M, et al. Physica Status Solidi (A),2015,212(2),376.
23 Ren Y K, Liu S D, Duan B, et al. Journal of Alloys and Compounds,2017,705,205.
24 Pettersson L A A, Roman L S, Inganäs O. Journal of Applied Physics,1999,86(1),487.
25 Chung C C, Narra S, Jokar E, et al. Journal of Materials Chemistry A,2017,5(27),13957.
26 Wu Z, Bai S, Xiang J, et al. Nanoscale,2014,6(18),10505.
[1] 张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
[2] 栾福园, 杨松旺, 吴子华, 谢华清. 钙钛矿太阳能电池的环境友好化研究进展[J]. 材料导报, 2020, 34(Z2): 11-16.
[3] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[4] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[5] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[6] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[7] 肖帅, 王振飞, 张萍, 何岗, 洪建和. 还原氧化石墨烯/碳纸空气电极的电化学制备及性能[J]. 材料导报, 2020, 34(20): 20005-20009.
[8] 茹鹏斌, 毕恩兵, 陈汉. 无机电荷传输层界面修饰制备稳定钙钛矿太阳能电池[J]. 材料导报, 2020, 34(18): 18003-18008.
[9] 姚庆达, 温会涛, 杨长凯, 梁永贤, 王小卓, 但卫华. 多层氧化石墨烯膜的结构、性能及在水处理中的应用进展[J]. 材料导报, 2020, 34(15): 15047-15058.
[10] 于嫚. 聚焦钙钛矿光伏器件中慢速动力学机制研究进展[J]. 材料导报, 2020, 34(15): 15059-15062.
[11] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[12] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[13] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[14] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[15] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed