Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21058-21070    https://doi.org/10.11896/cldb.20070204
  环境催化材料 |
金属有机框架材料在光催化还原CO2中的应用
张中伟1, 郭瑞堂1,2,3, 秦阳1, 郭德宇1, 潘卫国1,2,3
1 上海电力大学能源与机械工程学院,上海 200090
2 上海发电环保工程技术研究中心,上海200090
3 机械工业清洁发电环保技术重点实验室,上海 200090
Application of Metal-Organic Framework in CO2 Photocatalytic Reduction
ZHANG Zhongwei1, GUO Ruitang1,2,3, QIN Yang1, GUO Deyu1, PAN Weiguo1,2,3
1 College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2 Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai 200090, China
3 Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai 200090, China
下载:  全 文 ( PDF ) ( 3769KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 人类依靠化石燃料来加速现代社会的发展,但化石燃料的过度消耗引发了一系列问题,如严峻的能源危机和环境恶化。例如化石燃料的大量使用导致大气中二氧化碳的含量逐年增加,成为全球温室效应的主要原因。在众多CO2减排的技术中,光催化还原CO2技术不仅可以减少大气中的CO2含量,而且还能通过太阳能将CO2光催化转化为有价值的化学物质,被认为是最有发展前景的技术之一。
金属有机框架材料(Metal-organic frameworks, MOFs),也称为多孔配位聚合物,是具有周期性网状结构的三维多孔材料,由无机金属离子(或金属簇)和有机配体组成。MOFs具有大的比表面积、可调节的结构、丰富的催化活性位点、独特的电子能带结构,这些优点使其在光催化还原CO2反应中受到越来越多科研工作者的青睐,应用前景令人看好。目前,用于光催化还原CO2的MOFs材料主要包括单一MOFs光催化剂与基于MOFs的复合光催化剂两类。文章列举了具体实例来说明MOF基光催化材料在还原二氧化碳中的优势和独特性以及提高光催化活性的改进方法。
本文归纳了近年来MOF基光催化剂在光催化还原CO2方面的研究进展,讨论了提高MOF基光催化剂(MOFs功能化、半导体/MOFs、光敏剂/MOFs、贵金属/MOFs)用于CO2还原性能的合理方法,探讨了基于MOFs的光催化剂用于CO2还原的挑战和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张中伟
郭瑞堂
秦阳
郭德宇
潘卫国
关键词:  催化剂  金属有机框架  光催化还原  复合材料  二氧化碳    
Abstract: Although human beings rely on fossil fuels to accelerate the development of modern society, the over-use of fossil fuels has raised a series of problems such as tough energy crisis and environmental exacerbation. Excessive depletion of fossil fuels leads to the sharp increase of CO2 content in the atmosphere, which is the main cause of the global greenhouse effect. Among the abundant technologies for reducing CO2 emissions, the photocatalytic reduction of CO2 technology not only reduces the CO2 content in the atmosphere, but also converts CO2 into valuable chemicals through solar energy, which is considered to be one of the most promising technologies.
Metal-organic frameworks (MOFs), also known as porous coordination polymers, are three-dimensional porous materials with a periodic network structure composed of inorganic metal ions (or metal clusters) and organic ligands. MOFs are particularly promising materials due to large surface area, adjustable structure, unique electronic band structures and abundant catalytic active sites, which make it more and more favored by researchers in the photocatalytic reduction of CO2. At present, MOFs used for photocatalytic reduction of CO2 mainly include single MOFs photocatalyst and composite photocatalyst based on MOFs. The article lists specific examples to illustrate the advantages and uniqueness of MOF-based photocatalytic materials in the reduction of CO2 and modified methods to improve photocatalytic activity.
This review summarizes recent research progresses in MOF-based photocatalysts for photocatalytic reduction of CO2. Besides, it discusses strategies in rational design of MOF-based photocatalysts (MOFs functionalization, semiconductor/MOFs, photosensitizer/MOFs and noble me-tal/MOFs) with enhanced performance on CO2 reduction. Moreover, challenges and outlook on using MOFs-based photocatalysts for CO2 reduction are also put forward.
Key words:  catalyst    metal-organic framework    photocatalytic reduction    composite materials    carbon dioxide
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  O643.36  
  O644.1  
基金资助: 国家重点研发计划(2018YFB0605002);国家自然科学基金(21546014;50616114)
通讯作者:  grta@zju.edu.cn;pweiguo@163.com   
作者简介:  张中伟,2018年6月毕业于济南大学,获得工学学士学位。现为上海电力大学能源与机械工程学院硕士研究生,在郭瑞堂教授与潘卫国教授的指导下进行研究。目前主要研究领域为光催化还原二氧化碳。
郭瑞堂于浙江大学获得学士学位和博士学位。2015年,他在上海电力大学担任教授。他目前的主要研究方向是光催化还原二氧化碳、光
催化制氢和光催化有机污染物降解以及选择性催化还原脱硝技术。以第一作者和通讯作者身份公开发表学术论文90余篇,其中SCI检索60余篇。
潘卫国1997年于浙江大学取得博士学位,目前任能源与机械工程学院党委书记,兼任中国动力工程学会环保专委会主任委员。目前主要研究方向为能源清洁高效利用和光催化过程的能源转化与环境保护。主持并参与了国家“973”“863”、科技支撑计划、重点研发计划、国家自然科学基金。发表含ESI高被引论文、SCI论文在内的国内外学术论文160余篇,申请发明专利60余项。
引用本文:    
张中伟, 郭瑞堂, 秦阳, 郭德宇, 潘卫国. 金属有机框架材料在光催化还原CO2中的应用[J]. 材料导报, 2021, 35(21): 21058-21070.
ZHANG Zhongwei, GUO Ruitang, QIN Yang, GUO Deyu, PAN Weiguo. Application of Metal-Organic Framework in CO2 Photocatalytic Reduction. Materials Reports, 2021, 35(21): 21058-21070.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070204  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21058
1 Zhou W J, Niu Z C, Wu S G, et al.Science of the Total Environment, 2020, 729, 138639.
2 Xuan X, Chen S, Zhao S, et al. Frontiers in Chemistry, 2020, 8, 573797.
3 Demicco R V, Lowenstein T K, Hardie L A.Geology, 2003, 31, 793.
4 Leonzio G, Foscolo P U, Zondervan E, et al.Industrial & Engineering Chemistry Research, 2020, 59 (15), 6961.
5 Sullivan M, Rodosta T, et al.AIChE Journal, 2020, 66(4), 16855.
6 Tan Y T, Nookuea W, Li H L, et al.Energy Conversion & Management, 2016, 118, 204.
7 Maina J W, Pozo-gonzalo C, et al.Materials Horizons, 2017, 4(3), 345.
8 Wang B Y, Chen W, Song Y F, et al.Catalysis Today, 2017, 311, 23.
9 Neatu S, Maciaagullo J A, Garcia H.International Journal of Molecular Sciences, 2014, 15(4), 5246.
10 Habisreutinger S N, Schmidt-mende L, Stolarczyk J K.Angewandte Chemie, 2013, 52(29), 7372.
11 Fujishima A, Honda K.Nature, 1972, 238(5358), 37.
12 Li R, Zhang W, Zhou K.Advanced Materials, 2018, 30(35), 1705512.
13 Wang X Y, Wang Y S, Gao M C, et al.Applied Catalysis B: Environmental, 2020,270, 118876.
14 Song X H, Li X, Zhang X Y, et al.Applied Catalysis B: Environmental, 2020, 268, 118736.
15 Lequang L, Stanbury M, Chardonnoblat S, et al.Chemical Communications, 2019, 55(90), 13598.
16 Huang Q, Ye J, Si H, et al.Environmental Science and Pollution Research, 2019, 26(10), 9672.
17 Meng Y J, Zhang L X, Jiu H F, et al.Materials Science in Semiconductor Processing, 2019, 95, 35.
18 Ma Y J, Tang Q, Sun W Y, et al.Applied Catalysis B: Environmental, 2020, 270, 118856.
19 Matsubara Y, Grills D C, et al.ACS Catalysis, 2015, 5(11), 6440.
20 Tahir M, Amin N S.Energy Conversion & Management, 2013, 76, 194.
21 Xie S, Zhang H K, et al.Chinese Journal of Catalysis, 2020,41,1125.
22 Liu Y, Deng L, et al.Applied Surface Science, 2019, 498, 143899.
23 Zhang H, Tang Y Q, Liu Z X, et al.Chemical Physics Letters, 2020, 751, 137467.
24 Liu S W, Wang J H, Yu J G.RSC Advances, 2016, 6(65), 59998.
25 Zhao H, Wang X S, Feng J F, et al.Catalysis Science & Technology, 2018, 8(5), 1288.
26 Guo J J, Wang K, et al.Catalysis Science & Technology, 2017, 7, 6013.
27 Jiang Z Y, Liang X Z, Zheng H L, et al.Applied Catalysis B: Environmental, 2017, 219, 209.
28 Li F, Zhang L, Chen X, et al. Physical Chemistry Chemical Physics, 2017, 19(32), 21862.
29 Pelaez M, Nolan N T, Pillai S C, et al.Applied Catalysis B: Environmental, 2012, 125, 331.
30 Rao Y F, Chu W.Industrial & Engineering Chemistry Research, 2013, 52(38), 13580.
31 María D. Hernández A, Fernando F, et al. Energy & Environmental Science, 2009, 2(12), 1231.
32 Yu J G, Jin J, Cheng B,et al. Journal of Materials Chemistry, 2014, 2(10), 3407.
33 Bie C B, Zhu B C, et al.Advanced Materials, 2019, 31, 1902868.
34 Zhu Z Z, Han Y, Chen C P, et al.ChemCatChem, 2018, 10(7), 1627.
35 Yaghi O M, Li H L. Journal of the American Chemical Society, 1995, 117(41), 10401.
36 Yaghi O M, Li G M, et al.Nature, 1995, 378(14), 703.
37 Trickett C A, Helal A, Al-Maythalony B A, et al.Nature Reviews Mate-rials, 2017, 2(8), 17045.
38 Zhou H C, Long J R, Yaghi O M.Chemical Reviews, 2012, 112, 673.
39 Zhu Q L, Xu Q.Chemical Society Reviews, 2014, 43(16), 5468.
40 He H M, Perman J A, Zhu G S, et al.Small, 2016, 12(46), 6309.
41 Kishida H, Matsuzaki H, Okamoto H, et al.Nature, 2000,45, 929.
42 Pei Y, Verdaguer M, Kahn O,et al. Journal of the American Chemical Society, 1986, 108(23), 7428.
43 Nagao Y, Fujishima M, Ikeda R, et al.Synthetic Metals, 2003, 133(2), 431.
44 Férey G. Chemical Society Reviews, 2008, 37(1), 191.
45 Férey G, Serre C.Chemical Society Reviews, 2009, 38(5), 1380.
46 Goesten M G, Kapteijn F, Gascon J.CrystEngComm, 2013, 15, 9249.
47 Sneddon G, Greenaway A, Yiu H H P.Advanced Energy Materials, 2014, 4(10), 1301873.
48 Horiuchi Y, Toyao T, Saito M, et al.The Journal of Physical Chemistry C, 2012, 116(39), 20848.
49 Wang Y, Huang N Y, Shen J Q, et al.Journal of the American Chemical Society, 2018, 140(1), 38.
50 Coropceanu V, Cornil J, et al.Chemical Reviews, 2007, 107, 926.
51 Kaake L G, Barbara P F, Zhu X Y.Journal of Physical Chemistry Letters, 2010, 1(3), 628.
52 Pasneer W F, Cottaar J, Tanase C, et al.Physical Review Letters, 2005, 94(20), 206601.
53 Wang J L, Wang C, Lin W B.ACS Catalysis, 2012, 2(12), 2630.
54 Dhakshinamoorthy A, Asiri A M, García H.Angewandte Chemie International Edition, 2016, 55(18), 5414.
55 Li Y, Xu H, Ouyang S X,et al. Physical Chemistry Chemical Physics, 2016, 18(11), 7563.
56 Wang H L, Zhu Q L, Zou R Q, et al.Chem, 2017, 2(1), 52.
57 Wang S, Wang X.Small, 2015, 11(26), 3097.
58 Zhang T, Lin W B.Chemical Society Reviews, 2014, 43(16), 5982.
59 Fu Y H, Sun D R, Chen Y J, et al. Angewandte Chemie International Edition, 2012, 51(14), 3364.
60 Cavka J H, Jakobsen S, Olsbye U, et al.Journal of the American Chemical Society, 2008, 130(42), 13850.
61 Mondloch J E, Katz M J, Planas N,et al. Chemical Communications, 2014, 50(64), 8944.
62 Sliva C G, Luz I, Corma A, et al. Chemistry-A European Journal, 2010, 16(36), 11133.
63 Liang W B, Babarao R, D’alessandro D M.Inorganic Chemistry, 2013, 52(22), 12878.
64 Wang S, Yao W S, Lin J L, et al.Angewandte Chemie International Edition, 2014, 53(4), 1034.
65 Sun D R, Liu W J, Qiu M, et al.Chemical Communications-Royal Society of Chemistry, 2015, 51(11), 2056.
66 Lee Y, Kim S, Kang J K, Cohen S M.Chemical communications (Cambridge, England), 2015, 51(26), 5735.
67 Laurier K G M, Vermoortele F, Ameloot R P,et al. Journal of the American Chemical Society, 2013, 135(39), 14488.
68 Wang D K, Huang R K, et al. ACS Catalysis, 2014, 4(12), 4254.
69 Dao X Y, Guo J H, et al. Inorganic Chemistry, 2019, 58(13), 8517.
70 Dao X Y, Guo J H, Zhang X Y, et al. Journal of Materials Chemistry A, 2020, 8(48), 25850.
71 Sun D R, Fu Y H, Liu W J, et al.Chemistry: A European Journal, 2013, 19(42), 14279.
72 Torrisi A, Bell R G, et al.Crystal Growth & Design, 2010, 10(7), 2839.
73 Liu J W, Fan Y Z, Li X, et al.Applied Catalysis B:Environmental, 2018, 231, 173.
74 Sadeghi N, Sharifnia S, et al.Journal of CO2 Utilization, 2016, 16, 450.
75 Liu Y Y, Yang Y M, Sun Q L, et al.ACS Applied Materials & Interfaces, 2013, 5(15), 7654.
76 Zhang H B, Wei J, Dong J C, et al.Angewandte Chemie, 2016, 55(46), 14310.
77 Xu H Q, Hu J H, Wang D K,et al. Journal of the American Chemical Society, 2015, 137(42), 13440.
78 Wang C, Xie Z G, Dekrafft K E, et al.Journal of the American Chemical Society, 2011, 133(34), 13445.
79 Chambers M B, Wang X, Elgrishi N, et al.ChemSusChem, 2015,8, 603.
80 Hu J M, Ding J, Zhong Q.Journal of Colloid and Interface Science, 2020, 560,857.
81 Wang H, Wu D, et al. Journal of CO2 Utilization, 2019, 34, 411.
82 Credico B D, Redeaelli M, Bellardita M, et al.Catalysts, 2018, 8, 353.
83 Crake A, Christoforidis K C, Kafizas A,et al. Applied Catalysis B: Environmental, 2017, 210, 131.
84 Wang M T, Wang D K, Li Z H.Applied Catalysis B: Environmental, 2016, 183, 47.
85 Dao X Y, Xie X F, Guo J H, et al.ACS Applied Energy Materials, 2020,3(4), 3946.
86 Wang Y N, Guo L N, Zeng Y Q, et al.ACS Applied Materials & Interfaces, 2019, 11(34), 30673.
87 Xu G L, Zhang H B, Wei J,et al. ACS Nano, 2018, 12(6), 5333.
88 Shi L, Wang T, Zhang H B,et al. Advanced Functional Materials, 2015, 25(33), 5360.
89 Wang Y, Zhen W, Zeng Y, et al. Journal of Materials Chemistry A, 2020, 8(12), 6034.
90 Chen Q, Li S, Xu H, et al.Chinese Journal of Catalysis, 2020, 41, 514.
91 Xie X F, Dao X Y, Guo F,et al. Chemistry Select, 2020, 5(13), 4001.
92 Wang S, Wang X C.Applied Catalysis B: Environmental, 2015, 162, 494.
93 Peng H J, Zhu L, Wang Y L, et al.Inorganic Chemistry Communications, 2020, 117, 107943.
94 Qin J N, Wang S B, Wang X C.Applied Catalysis B: Environmental, 2017, 209, 476.
95 Guo F, Wei Y P, Wang S Q, et al.Journal of Materials Chemistry A, 2019, 7(46), 26490.
96 Becerra J, Nguyen D T, Gopalakrishnan V N, et al. ACS Applied Energy Materials, 2020, 3(8), 7659.
97 Sun D R, Liu W J, et al. Chemistry A European Journal, 2014, 20, 4780.
98 Guo F, Yang S Z, Liu Y, et al. ACS Catalysis, 2019, 9, 8464.
[1] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[2] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[3] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[4] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[5] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[6] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[7] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[8] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[9] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[10] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[11] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[12] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[13] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[14] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[15] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed