Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24032-24040    https://doi.org/10.11896/cldb.20080207
  无机非金属及其复合材料 |
一锅法合成缺陷型Bi/BiOBr纳米复合材料及其可见光驱动去除水体六价铬离子和有机染料的研究
贾雯1,2, 袁小亚1,2, 冯紫娟1,2, 吴雪2, 彭冬1, 刘毅2
1 重庆交通大学中国-西班牙先进材料合作研究中心,重庆 400074
2 重庆交通大学材料科学与工程学院,重庆 400074
Facile One-pot Synthesis of Bi-decorated Defective BiOBr Composites with Remarkable Visible Light Driven Activity Towards Reduction of Aqueous Cr(Ⅵ) and Degradation of Organic Dye
JIA Wen1,2, YUAN Xiaoya1,2, FENG Zijuan1,2, WU Xue2, PENG Dong1, LIU Yi2
1 China-Spain Collaborative Research Center for Advanced Materials, Chongqing Jiaotong University, Chongqing 400074, China
2 College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 6165KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过调节铋的前驱体与溴化物盐的相对物质的量比,采用简便的一锅溶剂热法制备了具有可调的铋含量和氧空位的Bi/BiOBr纳米复合材料。详细的表征表明,BiOBr表面上的Bi纳米粒子和{110}面上的氧空位是在此过程中同时制造的,以乙二醇(EG)用作溶剂,可将Bi3+还原为金属Bi,并同时形成氧空位。光催化性能表明,Bi/BiOBr纳米复合材料在降解Cr(Ⅵ)和亚甲基蓝(MB)方面表现出优于同类材料的光催化活性,Bi/BiOBr的去除效率高度依赖于Bi的含量和氧空位。在所有制备的样品中,Bi含量为5.0%的样品在4 h可见光照射下表现出最高的光催化活性,其中Cr(Ⅵ)和MB的去除率分别达到97.3%和90.5%。机理研究表明,Bi/BiOBr纳米复合材料具有明显的可见光驱动光活性,归功于氧空位和金属Bi的表面等离子共振(SPR)效应,有助于增强可见光的收集和光生电子-空穴对的分离效率。本工作为Bi含量可控且伴随氧空位形成的异质结构材料的设计提供了一种新方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾雯
袁小亚
冯紫娟
吴雪
彭冬
刘毅
关键词:  Bi/BiOBr  氧缺陷  表面等离子共振  光催化  可见光    
Abstract: Bi/BiOBr nanocomposites with tunable Bi content and oxygen vacancies were prepared via a facile one-pot solvothermal method by adjusting the relative molar ratio of Bi precursor and bromide salt. Detailed characterizations showed that Bi nanoparticles and oxygen-vacancies on the {110}-plane of BiOBr were fabricated simultaneously in this process and ethylene glycol(EG) used as solvent afforded reduction of Bi3+ to metallic Bi and coinstantaneous conformation of oxygen vacancy. The photocatalytic performance showed that the Bi/BiOBr nanocomposites exhibited superior photocatalytic activity to their counterparts in degrading aqueous Cr(Ⅵ) and methylene blue(MB), and the removal efficiency of Bi/BiOBr was highly dependent on the content of Bi and oxygen vacancy. Among all as-prepared samples, the sample with a Bi loading of 5.0% exhibited the highest photocatalytic activity with Cr(Ⅵ) and MB removal rates up to 97.3% and 90.5% within 4 h's visible light irradiation, respectively. The mechanism study demonstrated that the remarkable visible light driven photo-activity of Bi/BiOBr nanocomposites were described to the synergy of the surface plasmon resonance (SPR) effect of metallic Bi and oxygen vacancies, which contributed to enhance the visible light harvesting and the separation efficiency of photo-generated electron-hole pairs. The present work provided a new method to the design of heterostructure materials with controllable Bi content and concomitant formation of oxygen vacancies.
Key words:  Bi/BiOBr    oxygen vacancy    surface plasmon resonance    photocatalytic    visible light
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  X703  
通讯作者:  yuanxy@cqjtu.edu.cn   
引用本文:    
贾雯, 袁小亚, 冯紫娟, 吴雪, 彭冬, 刘毅. 一锅法合成缺陷型Bi/BiOBr纳米复合材料及其可见光驱动去除水体六价铬离子和有机染料的研究[J]. 材料导报, 2021, 35(24): 24032-24040.
JIA Wen, YUAN Xiaoya, FENG Zijuan, WU Xue, PENG Dong, LIU Yi. Facile One-pot Synthesis of Bi-decorated Defective BiOBr Composites with Remarkable Visible Light Driven Activity Towards Reduction of Aqueous Cr(Ⅵ) and Degradation of Organic Dye. Materials Reports, 2021, 35(24): 24032-24040.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080207  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24032
1 Wang X, Zhao Y, Li F, et al. Scientific Reports, 2016, 6(1), 1.
2 Yip C T, Huang H, Zhou L, et al. Advanced Materials, 2011, 23(47), 5624.
3 Shang L, Bian T, Zhang B, et al. Angewandte Chemie International Edition, 2014, 53(1), 250.
4 Deng Y, Tang L, Zeng G, et al. Applied Catalysis B: Environmental, 2017, 203, 343.
5 Yoneyama H, Yamashita Y, Tamura H. Nature, 1979, 282(5741), 817.
6 Linsebigler A L, Lu G, Yates J T. Chemical Reviews, 1995, 95(3), 735.
7 Ahmed A Y, Kandiel T A, Ivanova I, et al. Applied Surface Science, 2014, 319, 44.
8 Yang Y, Lai C, Zeng C, et al. Advances in Colloid & Interface Science, 2018, 254, 76.
9 Li H, Shang H, Cao X, et al. Environmental Science & Technology, 2018, 52(15), 8659.
10 Ye L, Su Y, Jin X, et al. Environmental Science: Nano, 2014, 1(2), 90.
11 Zhang Z, Wang W, Gao E, et al. Journal of Hazardous Materials, 2011, 196(196), 255.
12 Chang X, Gondal M A, Al-Saadi A A, et al. Journal of Colloid & Interface Science, 2012, 377(1), 291.
13 Hu J, Xu G, Wang J, et al. New Journal of Chemistry, 2014, 38(10), 4913.
14 Yan P, Li X, Jiang D, et al. Electrochimica Acta, 2017, 259, 873.
15 Jian X, Wei M, Yuan Z, et al. Applied Catalysis B Environmental, 2011, 107(3), 355.
16 Zhihui A I, Wingkei H O, Lee S, et al. Environmental Science & Technology, 2009, 43(11), 4143.
17 Jie L, Hao L, Zhan G, et al. Accounts of Chemical Research, 2016, 50(1), 112.
18 Jiang G, Wang X, Wei Z, et al. Journal of Materials Chemistry A, 2013, 1(7), 2406.
19 Wu D, Yue S, Wang W, et al. Applied Surface Science, 2016, 391, 516.
20 Guo Y, Zhang Y, Huang H, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(7), 4003.
21 F Dong, Xiong T, Yan S, et al. Journal of Catalysis, 2016, 344, 401.
22 Liu X, Cao H, Yin J. Nano Research, 2011, 4(5), 470.
23 Jiang G, Li X, Lan M, et al. Applied Catalysis B Environmental, 2017, 205, 532.
24 Chang C, Zhu L, Fu Y, et al. Chemical Engineering Journal, 2013, 233(11), 305.
25 Ni Z, Zhang W, Jiang G, et al. Chinese Journal of Catalysis, 2017, 38(7), 85.
26 Yuan X, Feng Z, Zhao J, et al. Catalysts, 2018, 8(10), 426.
27 Dafeng Zhang, Liu H, Su C, et al. Separation and Purification Technology, 2019. 218.
28 Gao M, Zhang D, Pu X, et al. Separation & Purification Technology, 2015, 154, 211.
29 Yao Y, Liang J, Wei Y, et al. Materials Letters, 2019, 240, 246.
30 Li H, Li J, Ai Z, et al. Angewandte Chemie, 2017, 57(1),122.
31 Cui Z, Dong X, Sun Y, et al. Nanoscale, 2018, 10(35), 16928.
32 Ma H, Min Z, Xing H, et al. Journal of Materials Science Materials in Electronics, 2015, 26(12), 10002.
33 Yuan X, Jing Q, Chen J, et al. Applied Clay Science, 2017, 143, 168.
34 Yuan X, Li W. Applied Clay Science, 2017, 138, 107.
35 Li W, Geng X, Xiao F, et al. Chemcatchem, 2017, 9(19),3762.
36 Fan Z, Zhao Y, Qiu L, et al. RSC Advances, 2016, 6(3), 2028.
37 Kong X Y, Lee W P C, Ong W J, et al. Chemcatchem, 2016, 8(19), 3074.
38 Dong X, Zhang W, Sun Y, et al. Journal of Catalysis, 2018, 357,41.
39 Liang K, Zheng J, Henry H, et al. Journal of Catalysis, 2012, 293(18), 116.
40 Jiang H, Dai H, Meng X, et al. Applied Catalysis B Environmental, 2011, 105(3), 326.
41 Xing H, Ma H, Fu Y, et al. Journal of Renewable and Sustainable Energy, 2015, 7(6).
42 Xia J, Yin S, Li H, et al. Dalton Transactions, 2011, 40(19), 5249.
43 Xiang L, Wang J, Dong Y, et al. Materials Science in Semiconductor Processing, 2018, 88, 214.
44 Ge L. Materials Chemistry and Physics, 2008, 107(2-3), 465.
45 Xu J, Pei L, Shi S, et al. Applied Surface Science, 2012, 258(18), 7118.
46 Zhang X, Ai Z, Jia F, et al. Journal of Physical Chemistry C, 2008, 112(3), 747.
47 Ye L, Zan L, Tian L, et al. Chemical Communications, 2011, 47(24), 6951.
48 Naeem M, Hasanain S K, Kobayashi M, et al. Nanotechnology, 2006, 17(10), 2675.
49 Jing L Q, Xu Z L, Du Y G, et al. Chemical Research in Chinese Universities, 2002, 23(5), 874.
50 Yang G, Miao W, Yuan Z, et al. Applied Catalysis B Environmental, 2018, 237, 302.
51 Liu J, Li H, Du N, et al. RSC Advances, 2014, 4(59), 31393.
52 Weng S, Fang Z, Wang Z, et al. ACS Applied Materials Interfaces, 2014, 6(21), 18423.
53 Toudert J, Serna R, de Castro M J, et al. Journal of Physical Chemistry C, 2012, 116(38), 20530.
54 Li Y, Zhao Y, Wu G, et al. Materials Research Bulletin, 2018, 101, 39.
55 Li Y, Zhu J, Yang R, et al. Micro & Nano Letters, 2018, 13, 1040.
56 Zhang X, Ji G, Liu Y, et al. Physical Chemistry Chemical Physics Pccp, 2015, 17(12), 8078.
57 Ming K, Li Y, Chen X, et al. Journal of the American Chemical Society, 2011, 133(41), 16414.
58 Liu J, Li H, Du N, et al. RSC Advances, 2014, 4(59), 31393.
59 Sun Y, Zhao Z, Zhang W, et al. Journal of Colloid & Interface Science, 2017, 485, 1.
60 Nakamura I, Negishi N, Kutsuna S, et al. Journal of Molecular Catalysis A Chemical, 2000, 161(1), 205.
61 Liu Z S, Wu B T. Materials Science in Semiconductor Processing, 2015, 31, 68.
62 Gaya U I, Abdullah A H. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2008, 9(1), 1.
63 Hua C, Dong X, Wang Y, et al. Journal of Materials Science, 2019, 54, 9397.
64 Imam S S, Adnan R, Mohd K N H, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(6), 6263.
65 Zhang X, Zhao L, Fan C, et al. Computational Materials Science, 2012, 61, 180.
66 Liu Y, Wang R, Yang Z, et al. Chinese Journal of Catalysis, 2015, 36(12), 2135.
[1] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[2] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[3] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[4] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[5] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[6] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[7] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[8] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[9] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[10] 曾鹂, 彭同江, 孙红娟, 李瑶, 杨敬杰. Mn掺杂LaNi1-xMnxO3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018-24025.
[11] 丁同悦, 陈奕桦, 胡俊俊, 杨本宏, 黄智锋. CeO2/Bi24O31Br10异质结构的制备及可见光催化性能[J]. 材料导报, 2021, 35(22): 22011-22015.
[12] 陈侣存, 崔雯, 陈鹏, 李康璐, 董帆, 王法理. 宽带隙金属氧化物材料光催化降解苯系物:反应机理和改性策略[J]. 材料导报, 2021, 35(21): 21001-21011.
[13] 张中伟, 郭瑞堂, 秦阳, 郭德宇, 潘卫国. 金属有机框架材料在光催化还原CO2中的应用[J]. 材料导报, 2021, 35(21): 21058-21070.
[14] 吴方棣, 胡家朋, 杨自涛, 郑辉东. Ag-O-N共掺杂闪锌矿ZnS光催化性质的第一性原理研究[J]. 材料导报, 2021, 35(18): 18012-18017.
[15] 刘景景, 张泽兰, 李诗, 刘宇, 杨佩佩, 李兴. 钒酸铋可见光催化材料的改性研究进展[J]. 材料导报, 2021, 35(17): 17163-17177.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed