Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17163-17177    https://doi.org/10.11896/cldb.20040162
  无机非金属及其复合材料 |
钒酸铋可见光催化材料的改性研究进展
刘景景, 张泽兰, 李诗, 刘宇, 杨佩佩, 李兴
攀枝花学院钒钛学院,攀枝花 617000
Research Progress on Modification of Bismuth Vanadate Visible Light Photocatalytic Materials
LIU Jingjing, ZHANG Zelan, LI Shi, LIU Yu, YANG Peipei, LI Xing
College of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, China
下载:  全 文 ( PDF ) ( 9338KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环境污染和能源短缺是21世纪人类迫切需要解决的两大难题,太阳能取之不尽、用之不竭,如何利用太阳能治理环境污染以及缓解能源短缺问题成为人们关注的焦点。钒酸铋(BiVO4)因其低成本、无毒、光稳定性好、带隙较小、对可见光具有良好的响应等诸多优势,是一种非常有前景的太阳能驱动的半导体光催化剂,成为光催化领域研究的热点。
在BiVO4的三种晶体类型中,单斜相BiVO4由于较小的带隙以及特殊的电子结构具有更高的可见光催化活性。但由于纯BiVO4能隙较窄,导致光生载流子极易快速复合,加之材料存在吸附性以及比表面积较小等缺陷,限制了其光催化活性的提高和实际应用。
为了提高BiVO4的可见光催化活性,科研工作者主要从两个方面对BiVO4进行改性修饰,一方面从纯BiVO4入手,通过对BiVO4微/纳米结构的可控合成来提高材料的比表面积和吸附性以及对光生载流子的传导能力等;另一方面通过构筑复合材料,以促进光生电子-空穴对的分离,降低其复合概率,进一步拓宽可见光响应范围,提高材料的吸附性和稳定性等,这些研究已经取得了可喜的成果,目前BiVO4材料的光催化效率大幅提升。
本文根据提高BiVO4光催化性能的方法不同对BiVO4可见光催化材料的研究进行了综述,主要包括BiVO4微/纳米结构的可控合成、贵金属沉积、元素掺杂、半导体复合以及BiVO4负载五种改性方法,重点介绍了材料在废水中有毒有机污染物降解、光解水制氢、CO2还原以及有机合成等方面的应用。最后针对该领域的研究现状展望了未来的发展方向,并指出了当前研究中亟待解决的问题,以期为开发稳定高效的BiVO4光催化材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘景景
张泽兰
李诗
刘宇
杨佩佩
李兴
关键词:  钒酸铋  光催化  改性    
Abstract: Environmental pollution and energy shortage are the two major problems that need to be solved urgently in the 21st century. Solar energy is inexhaustible energy, how to use solar energy to control environmental pollution and alleviate energy shortage has become the focus. Bismuth vanadate (BiVO4) is a promising solar-driven semiconductor photocatalyst due to its low cost, non-toxicity, high photostability, narrow band gap, good response to visible light, and has become a hotspot in photocatalyst field.
Among the three crystal types of BiVO4, the monoclinic phase BiVO4 exhibits the best photoactivity due to the smaller band gap and special electronic structure. However, the fast recombination of photoinduced carriers of pure BiVO4 as a result of narrow energy gap, coupled with its low adsorption and small specific surface area, limit the improvement of photocatalytic performance and practical application.
In order to improve the visible light photocatalytic activity of BiVO4, researchers mainly focus on modifying BiVO4 from two aspects including the controlled synthesis of BiVO4 micro/nanostructure so as to improve the specific surface area and adsorption, as well as the conductivity of photogenerated carriers or constructing composite materials to promote the separation of photogenerated electron-hole pairs, thus reduce their recombination probability, further broaden the visible light response range and improve the adsorption and stability of materials, etc. The research has achieved encouraging results. At present, the photocatalytic efficiency of bismuth vanadate material has been improved greatly.
This article provides a review on the recent advances of bismuth vanadate photocatalytic materials based on different modification methods, including the controlled synthesis of BiVO4 micro/nanostructure, noble metal deposition, element doping, semiconductor coupling, and BiVO4 loa-ding, which mainly focus on the application of the materials in the degradation of toxic organic pollutants in wastewater, hydrogen production from water splitting, CO2 reduction and organic synthesis, etc. Finally, some problems that need to be solved and the future development direction are pointed out, so as to provide a reference for the development of stable and efficient BiVO4 photocatalytic materials.
Key words:  bismuth vanadate    photocatalytic    modification
                    发布日期:  2021-09-26
ZTFLH:  TQ426  
基金资助: 四川省科技计划重点项目(2019YFG0259);2019年省级大学生创新创业训练计划项目(S201911360055)
通讯作者:  jingjingliu8610@163.com   
作者简介:  刘景景,2012年6月毕业于四川大学有机化学专业,获得理学博士学位。2015年受聘于攀枝花学院钒钛学院讲师,目前,主要从事钒钛功能材料的开发与研究。
引用本文:    
刘景景, 张泽兰, 李诗, 刘宇, 杨佩佩, 李兴. 钒酸铋可见光催化材料的改性研究进展[J]. 材料导报, 2021, 35(17): 17163-17177.
LIU Jingjing, ZHANG Zelan, LI Shi, LIU Yu, YANG Peipei, LI Xing. Research Progress on Modification of Bismuth Vanadate Visible Light Photocatalytic Materials. Materials Reports, 2021, 35(17): 17163-17177.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040162  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17163
1 Fujishima A, Honda K.Nature, 1972, 238(5358), 37.
2 Carey J H, Lawrence J, Tosine H M.Bulletin of Environmental Contamination and Toxicology, 1976, 16(6), 697.
3 Koe W S, Lee J W, Chong W C, et al.Environmental Science and Pollution Research, 2020, 27, 2522.
4 Liu S X, Liu H.Foundation and application of photocatalysis and photoelectric catalysis, Chemical Industry Press, China, 2006(in Chinese).
刘守新, 刘鸿.光催化及光电催化基础与应用, 化学工业出版社, 2006.
5 Monfort O, Plesch G.Environmental Science and Pollution Research, 2018, 25, 19362.
6 Tahir M, Tasleem S, Tahir B.International Journal of Hydrogen Energy, 2020, 45(32), 15985.
7 Malathi A, Madhavan J, Ashokkumar M, et al.Applied Catalysis A: Ge-neral, 2018, 555, 47.
8 Chen S, Huang D L, Xu P, et al.ACS Catalysis, 2020, 10(2), 1024.
9 Wang Z L, Huang X L, Wang X S. Catalysis Today, 2019, 335,31.
10 Tayebi M, Lee B K.Renewable and Sustainable Energy Reviews, 2019, 111, 332.
11 Liu X T, Gu S N, Zhao Y J, et al.Journal of Materials Science & Technology, 2020, 56, 45.
12 Matavos-Aramyan S, Soukhakian S, Jazebizadeh M H, et al.Applied Materials Today, 2020, 18, 100499.
13 KudoA, Ueda H K, Mikami I. Catalysis Letters, 1998, 53(3-4), 229.
14 Kudo A, Omori K, Kato H. Journal of the American Chemical Society, 1999, 121(49), 11459.
15 Tokunaga S, Kato H, Kudo A.Chemistry of Materials, 2001, 13(12), 4624.
16 Roth R S, Waring J L.American Mineralogist, 1963, 48, 1348.
17 Wu Z S, Xue Y T, He X F, et al.Journal of Hazardous Materials, 2020, 387, 122019.
18 Lin Y, Lu C, Wei C Y.Journal of Alloys and Compounds, 2019, 781, 56.
19 Dabodiya T S, Selvarasu P, Murugan A V.Inorganic Chemistry, 2019, 58(8), 5096.
20 Deshpande N G, Ahn C H, Koli R R, et al.Applied Surface Science, 2020, 514, 146075.
21 Khan I,Khan A Z, Sufyan A, et al. Ultrasonics-Sonochemistry, 2020, 68, 105233.
22 Samsudin M F R, Bashiri R N, Mohamed M, et al.Applied Surface Science, 2020, 504, 144417.
23 Corradini P G, Brito J F D, Zanoni M V B, et al.Journal of CO2 Utilization, 2020, 36, 187.
24 Shi C J, Dong X L, Wang X Y, et al.Chinese Journal of Catalysis, 2018, 39, 128.
25 Souza J S, Hirata F T H, Corio P.Journal of Nanoparticle Research, 2019, 21, 35.
26 Wang L Y, Bian Z Y. Chemosphere, 2020, 239, 124815.
27 Teng H H, Qin L L, Gao Z, et al.Liaoning Chemical Industry, 2019, 48(4), 328(in Chinese).
滕洪辉, 秦丽丽, 高泽, 等.辽宁化工, 2019, 48(4), 328.
28 Regmi C, Kshetri Y K, Pandey R P, et al.Journal of Environmental Sciences, 2019, 75, 84.
29 Zhu Z, Yang C X, Hwang Y T, et al.Materials Research Bulletin, 2020, 130, 110955.
30 Nguyen T D, Bui Q T P, Le T B, et al.RSC Advances, 2019, 9, 23526.
31 Tian X, Zhu Y, Zhang W, et al.Journal of Materials Science: Materials in Electronics, 2019, 30, 19335.
32 Chen Y S, Lin L Y, Lin H Y.International Journal of Hydrogen Energy, 2020, 45, 667.
33 Chen Y S, Lin LY, Ma J S.Electrochimica Acta, 2020, 329, 135171.
34 Saxena S, Verma A, Asha K, et al.International Journal of Hydrogen Energy, 2020, 45(51), 26746.
35 Pei Z Z, Jia H, Zhang Y L, et al.Journal of Nanoscience and Nanotech-nology, 2020, 20, 3053.
36 Regmi C, Kshetri Y K, Kim T H, et al.Molecular Catalysis, 2019, 470, 8.
37 Sudrajat H, Hartuti S.Research on Chemical Intermediates, 2019, 45, 2179.
38 Qin C, Liao H R, Rao F Y, et al.Solid State Sciences, 2020, 105, 106285.
39 Yang R J, Fan Y Y, Zhu R S.Materials Research Bulletin, 2020, 124, 110756.
40 Liu T, Tan G, Zhao C, et al.Applied Catalysis B: Environmental, 2017, 213, 87.
41 Zhang K F, Liu Y X, Deng J G, et al.Applied Catalysis B: Environmental, 2018, 224, 350.
42 Tayebi M, Lee B K.Catalysis Today, 2021, 361,183.
43 Xue S, He H, Wu Z et al. Journal of Alloys and Compounds, 2017, 694, 989.
44 Lv Y R, Liu C J, He R K, et al. Materials Research Bulletin, 2019, 117, 35.
45 Ma C Q, Wei M Z.Materials Letters, 2020, 259, 126849.
46 Li Z L, Jin C Y, Wang M, et al.Separation and Purification Technology, 2020, 232, 115937.
47 Lu M F, Li Q Q, Zhang C L, et al.Carbon, 2020, 160, 342.
48 Li S Y, Jiang Y, Jiang W C, et al.Applied Surface Science, 2020, 523, 146441.
49 Liu Y, Yuan A L, Xiao Y F, et al.Ceramics International, 2020, 46(10), Part B, 16157.
50 Ng L K S, Tan E J C, Goh T W, et al.Applied Materials Today, 2019, 15, 192.
51 Ye Z H, Xiao X Y, Chen J Y, et al.Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368, 153.
52 Singh G, Vaish R.Materials Chemistry and Physics, 2020, 240, 122238.
53 Baral B, Reddy K H, Parida K M.Journal of Colloid and Interface Science, 2019, 554, 278.
54 Zhao W, Feng Y, Huang H B, et al.Applied Catalysis B: Environmental, 2019, 245, 448.
55 Lai C, Zhang M M, Li B S, et al.Chemical Engineering Journal, 2019, 358, 891.
56 Soltani T, Tayyebi A, Lee B K.Catalysis Today, 2020, 340, 188.
57 Huang J W, Liu T T, Wang R F, et al. Journal of Colloid and Interface Science, 2020, 570, 89.
58 Xu D B, Xia T, Xu H M, et al.Chemical Engineering Journal, 2020, 392, 124838.
59 Li F, Leung D Y C.Chemical Engineering Science, 2020, 211, 115266.
60 Zhao H, Zalfani M, Li C F, et al.Journal of Colloid and Interface Science, 2019, 539, 585.
61 Li H L, Chen Y J, Zhou W, et al.Journal of Alloys and Compounds, 2019, 802, 76.
62 Omrani N, Nezamzadeh-Ejhieh A.Journal of Photochemistry and Photo-biology A: Chemistry, 2020, 389, 112223.
63 Wang D D, Li J, Xu Z F, et al.Journal of Colloid and Interface Science, 2019, 533, 344.
64 Wang Y L, Yu D, Wang W, et al.Separation and Purification Technology, 2020, 239, 116562.
65 Fakhravar S, Farhadian M, Tangestaninejad S.Applied Surface Science, 2020, 505, 144599.
66 Chen S, Huang D L, Zeng G M, et al.Chemical Engineering Journal, 2020, 382, 122840.
67 Zhao W, Zhang J, Zhu F X, et al.Chemical Engineering Journal, 2019, 361, 1352.
68 Chen F F, Wu C Y, Wang J N, et al.Applied Catalysis B: Environmental, 2019, 250, 31.
69 Zou L, Wang H R, Wu C, et al.Applied Surface Science, 2019, 498, 143900.
70 Xue Y T, Wu Z S, He X F, et al.Journal of Colloid and Interface Science, 2019, 548, 293.
71 Mandari K K, Do J Y, Pandey S, et al.Materials Research Bulletin, 2020, 122, 110695.
72 Li M, Xu G H, Guan Z Y.Science of The Total Environment, 2019, 664, 230.
73 Garza-Galván M D L, Zambrano-Robledo P, Vazquez-Arenas J.Applied Surface Science, 2019, 487, 743.
74 Song M T, Wu Y H, Zheng G P, et al.Applied Surface Science, 2019, 498, 143808.
75 Zhang G C, Zhong J L, Xu M, et al.Chemical Engineering Journal, 2019, 375, 122093.
76 Shi Q J, Li Z J, Chen Lu, et al.Applied Catalysis B Environmental, 2019, 244, 641.
77 Samsudin M F R, Jayabalan P J, Ong W J, et al.Journal of Photochemistry and Photobiology A: Chemistry, 2019, 378, 46.
78 Zhang M, Piao C C, Wang D, et al.Separation and Purification Techno-logy, 2020, 231, 115890.
79 Liang M J, Deng N, Xiang X Y, et al.Chinese Journal of Inorganic Chemistry, 2019, 35(2), 263(in Chinese).
梁梦君, 邓楠, 向心怡, 等.无机化学学报, 2019, 35(2), 263.
80 Claudino C H, Kuznetsova M, Rodrigues B S, et al.Materials Research Bulletin, 2020, 125, 110783.
81 Wang Y L, Ding K, Xu R, et al.Journal of Cleaner Production, 2020, 247, 119108.
82 Li Y, Xiao X Y, Ye Z H.Applied Surface Science, 2019, 467-468, 902.
83 Huang Z Y, Dai X D, Huang Z J, et al.Chemosphere, 2019, 221, 824.
84 Raja A, Rajasekaran P, Selvakuma K.Separation and Purification Technology, 2020, 233, 115996.
85 Li J L, Wang Q M, Zhang Y J, et al.Solid State Sciences, 2020, 104, 106200.
86 Samsudin M F R, Sufian S.Journal of Molecular Liquids, 2020, 314, 113530.
87 Liu C, Zhang X, Li W, et al.Materials Research Bulletin, 2020, 122, 110640.
88 Lin X, Liu C, Wang J B, et al.Separation and Purification Technology, 2019, 226, 117.
89 Yuan X Z, Zhang J, Yan M.Journal of Colloid and Interface Science, 2019, 541, 123.
90 Zhou T, Chen S, Wang J, et al.Chemical Engineering Journal, 2021, 403, 126350.
91 Samsudin M F R, Bacho N, Sufian S, et al. Journal of Molecular Liquids, 2019, 277, 977.
92 Gangu K K, Maddila Suresh, Jonnalagadda S B.Science of The Total Environment, 2019, 646, 1398.
93 Ran J H, Bi S G, Jiang H Y, et al.Cellulose, 2019, 26, 6259.94 Ran J H, Chen H B, Bai X, et al.Applied Surface Science, 2019, 493, 1167.
95 Han N, Zhao S, Chen Z L, et al.Journal of the Chinese Ceramic Society, 2019, 47(7), 924(in Chinese).
韩娜, 赵帅, 陈政利, 等.硅酸盐学报, 2019, 47(7), 924.
96 Wang T, Liu X Q, Han D L, et al.International Journal of Hydrogen Energy, 2019, 44, 31969.
97 Tavker N, Gaur U, Sharma M.Journal of Environmental Chemical Engineering, 2020, 8, 104027.
[1] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[2] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[3] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[4] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[5] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[6] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[7] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[8] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[9] 周志刚, 陈功鸿, 张红波, 凌永毅. 橡胶粉/SBS与高黏剂复合改性沥青的制备及性能研究[J]. 材料导报, 2021, 35(6): 6093-6099.
[10] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[11] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[12] 孙振宇, 张源, 左迎峰, 吴义强, 王张恒, 吕建雄. 有机-无机复合改性速生木材研究现状与展望[J]. 材料导报, 2021, 35(5): 5181-5187.
[13] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[14] 李靖, 罗凯怡, 胡文宇, 刘禹彤, 袁欢, 张秋平, 王笑乙, 徐明. 高效Mn/ZnO-Ag纳米复合光催化体系的简易制备及研究[J]. 材料导报, 2021, 35(4): 4017-4022.
[15] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed