Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24018-24025    https://doi.org/10.11896/cldb.20100261
  无机非金属及其复合材料 |
Mn掺杂LaNi1-xMnxO3的合成及在可见光下的光催化活性
曾鹂1,2,3, 彭同江1,2,3, 孙红娟1,2,3, 李瑶1,2,3, 杨敬杰1,2,3
1 西南科技大学环境与资源学院,绵阳 621010
2 西南科技大学固体废物处理与资源化教育部重点实验室,绵阳 621010
3 西南科技大学矿物材料及应用研究所,绵阳 621010
Synthesis and Photocatalytic Activity in Visible Light of Mn-doped LaNi1-xMnxO3
ZENG Li1,2,3, PENG Tongjiang1,2,3, SUN Hongjuan1,2,3, LI Yao1,2,3, YANG Jingjie1,2,3
1 School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
2 Education Ministry Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China
3 Institute of Mineral Materials and Application, Southwest University of Science and Technology, Mianyang 621010, China
下载:  全 文 ( PDF ) ( 5769KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法制备LaNi1-xMnxO3(x=0, 0.2, 0.4, 0.6, 0.8, 1.0)钙钛矿型氧化物光催化材料,借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、光电子能谱(XPS)等现代分析测试手段表征LaNi1-xMnxO3的物相、微观形貌及分子振动与键能的变化,并以可见光下对甲基橙的降解率为指标评价其光催化性能。结果表明,Mn掺杂使衍射峰向低角度偏移,引起晶格扩张,导致LaNi1-xMnxO3晶体粒径增大;掺杂后Mn4+/Mn3+与Oads/Olatt的峰面积比例增加,提高了催化剂的氧化能力、界面电子转移率和表面吸附氧的数量,进而使其光催化活性提高;当Mn掺杂量为40%时,获得的LaNi0.6Mn0.4O3具有最优的光催化性能,可见光照射120 min对甲基橙的降解率高达99.46%,循环利用五次后降解率仍可达86.97%,这表明LaNi0.6Mn0.4O3具有较好的稳定性和循环利用性。在光催化降解过程中自由基活性按从高到低排序为:h+、e-、·OH。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾鹂
彭同江
孙红娟
李瑶
杨敬杰
关键词:  钙钛矿  LaNi1-xMnxO3  掺杂  光催化  甲基橙    
Abstract: Aseries of Mn-doped LaNi1-xMnxO3 (x=0,0.2,0.4,0.6,0.8,1.0) perovskite oxide photocatalytic materials were prepared by sol-gel me-thod. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and other modern analytical methods were used to characterize the phase and microscopic morphology of LaNi1-xMnxO3 and the photocatalytic performance of the samples was tested with degradation rate of methyl orange. The results showed that Mn-doping caused the diffraction peak to shift toward low angle, which caused lattice expansion and increased the crystal size. Furthermore, after doping, the peak area ratio of Mn4+/Mn3+ and Oads/Olatt increased, which improved the oxidation capacity, the interfacial electron transfer rate and the amount of oxygen adsorbed on the surface of the catalyst and further improved the photocatalytic activity. When the Mn doping amount was 40%, LaNi0.6-Mn0.4O3 had the best photocatalytic performance, and the degradation rate of methyl orange was as high as 99.46% in 120 min under visible light irradiation. In addition, even after five cycles of operation, LaNi0.6Mn0.4O3 still maintains high photocatalytic activity and has excellent recyclability. In the photocatalytic degradation process, the order of free radical activity was: h+, e-, ·OH.
Key words:  perovskite    LaNi1-xMnxO3    doping    photocatalytic    methyl orange
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  O643  
基金资助: 四川省教育厅创新团队项目(14TD0012);西南科技大学研究生创新基金(19ycx0033)
通讯作者:  tjpeng@swust.edu.cn   
作者简介:  曾鹂,西南科技大学环境科学与工程专业硕士研究生,主要从事光催化材料的研究。彭同江,西南科技大学教授,博士研究生导师,享受国务院特殊津贴专家。中国建筑材料工业科技委员会专家,中国矿物岩石地球化学学会副秘书长,中国硅酸盐学会非金属矿分会理事,四川省学术和技术带头人。主要从事矿物晶体化学、矿物材料学及纳米材料物理与化学、固体废物资源化处理研究。先后完成国家自然科学基金、“863”、国家科技支撑计划和科技型中小企业创新基金项目15项及省部级项目16项等。在晶体成分、结构和性能关系研究、层状硅酸盐矿物开发利用以及纳米材料制备和性能表征等方面做出了创新性的研究成果。在矿物晶体化学和应用矿物学及矿物纳米材料研究方向上具有突出的特色。多项研究成果达国内领先和国际先进水平,并具有重要的科学和社会意义。先后获省部级一等奖1项、三等奖7项,出版专著3部,已授权16项。在国内外知名学术刊物和学术会议上发表学术论文200余篇,其中EI、SCI收录60余篇。
引用本文:    
曾鹂, 彭同江, 孙红娟, 李瑶, 杨敬杰. Mn掺杂LaNi1-xMnxO3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018-24025.
ZENG Li, PENG Tongjiang, SUN Hongjuan, LI Yao, YANG Jingjie. Synthesis and Photocatalytic Activity in Visible Light of Mn-doped LaNi1-xMnxO3. Materials Reports, 2021, 35(24): 24018-24025.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100261  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24018
1 Zhu Y, Zhu R, Yan L, et al. Applied Catalysis B: Environmental, 2018, 239, 280.
2 Ma L Z, Ji B, Yang Z, et al. Spectroscopy and Spectral Analysis, 2019(9),2894(in Chinese).
马立哲, 季邦, 杨洲, 等. 光谱学与光谱分析, 2019(9), 2894.
3 Qian J, Xue Y, Ao Y, et al. Chinese Journal of Catalysis, 2018, 39(4), 682.
4 Zhai X, Wang S, Shang C, et al. Journal of Materials Research, 2019, 34(21), 3627.
5 Wang X T, Li Y, Zhang X Q, et al. Applied Surface Science, 2019, 504, 144363.
6 Liu R H, Zhou H, Song Z N, et al. Nanoscale, 2019, 11(19), 9302.
7 Ahmadi M, Dorraji M S S, Hajimiri I, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112886.
8 Li S, Hu S, Jiang W, et al. Journal of Colloid and Interface Science, 2018, 521, 42.
9 Wu Y, He T. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2018, 199, 283.
10 Jiang J, Jia Y, Wang Y, et al. Applied Surface Science, 2019, 486, 93.
11 Jin Z, Hu R, Wang H, et al. Applied Surface Science, 2019, 491, 432.
12 Hu W Y, Xu M, Wang X Y, et al. Materials Reports B:Research Papers, 2020, 34(5), 10018(in Chinese).
胡文宇, 徐明, 王笑乙, 等. 材料导报:研究篇, 2020, 34(5), 10018.
13 Kohan E, Dezfuli A S. Journal of Materials Science: Materials in Electronics Volume, 2019, 30(18), 17170.
14 Safari S, Ahmadian S M S, Amani-Ghadim A R. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 394, 112461.
15 Yang D, Zou X, Sun Y, et al. Frontiers of Chemical Science and Engineering, 2018, 12(3), 440.
16 Dhiman M, Singhal S. Journal of Rare Earths, 2019, 37(12), 1279.
17 He M, Wu X Y, Chen B, et al. Electrochimica Acta, 2020, 333, 135566.
18 Fu X X, Sang L X, Wang J Z, et al. Journal of Tianjin University (Science and Technology), 2001, 34(2), 229(in Chinese).
傅希贤, 桑丽霞, 王俊珍, 等. 天津大学学报(自然科学与工程技术版), 2001, 34(2), 229.
19 Oliva J, Garcia C R, Verduzco E, et al. Ceramics International, 2017, 43(16), 14074.
20 Hoang V Q T, Phan T Q P, Senthilkumar V, et al. International Journal of Applied Ceramic Technology, 2019, 16, 1651.
21 Xie R,Li Y,Liu H, et al. Journal of Alloys & Compounds, 2017, 691, 378.
22 Karoblis D, Mazeika K, Baltrunas D, et al. Journal of Sol-Gel Science and Technology, 2020, 93, 650.
23 Khatri A, Rana P S. Physica B-Condensed Matter, 2020, 579, 411905.
24 Xin B, Liang M S, Wang J, et al. Science Technology and Engineering, 2018, 18(14), 79(in Chinese).
辛博, 梁美生, 王洁, 等. 科学技术与工程, 2018, 18(14), 79.
25 Flores-Lasluisa J X, Huerta F, Cazorla-Amoros D, et al. Journal of Colloid and Interface Science, 2019, 556, 658.
26 Fu Z, Hu J, Hu W, et al. Applied Surface Science, 2018, 441(31), 1048.
27 Zeng Y, Wang Y, Zhang S, et al. Journal of Colloid and Interface Science, 2020, 580, 59.
28 Li S J, Li Y Z, Chen Y J, et al. ChemCatChem, 2020, 12(2), 623.
29 Li P, Chen X, Ma L, et al. Catalysis Science & Technology, 2019, 9(5), 1165.
30 Yoo J S, Liu Y, Rong X, et al. Journal of Physical Chemistry Letters, 9(7), 1473.
31 Tarjomannejad A, Niaei A, Gómez M J I, et al. Journal of Thermal Analysis & Calorimetry, 2017, 129(2), 671.
32 Hu Y L, Li Y J, Xie Y C, et al. Materials Reports B:Research Papers, 2020, 34(9), 18009(in Chinese).
胡玉林, 李永进, 谢燕春, 等. 材料导报:研究篇, 2020, 34(9), 18009.
33 Zhou W, Fu H. Inorganic Chemistry Frontiers, 2018, 5(6), 1240.
[1] 丁苏莹, 吴子华, 谢华清, 王元元, 栾福园, 余思琦. 铜铟镓硒太阳能电池性能提升方法[J]. 材料导报, 2021, 35(z2): 1-7.
[2] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[3] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[4] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[5] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[6] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[7] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[8] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[9] 汪冲, 朱晓云, 龙晋明. 掺杂导电增强相对铝电极性能的影响[J]. 材料导报, 2021, 35(8): 8082-8087.
[10] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[11] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[12] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[13] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[14] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[15] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed