Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8082-8087    https://doi.org/10.11896/cldb.20020149
  金属与金属基复合材料 |
掺杂导电增强相对铝电极性能的影响
汪冲1, 朱晓云1,2, 龙晋明2
1 昆明理工大学材料科学与工程学院,昆明 650093
2 昆明贵信凯科技有限公司,昆明 650039
Effect of Doping Conduction Enhancement on the Performance of Aluminum Electrode
WANG Chong1, ZHU Xiaoyun1,2, LONG Jinming2
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Kunming Guixinkai Technology Co., Ltd., Kunming 650039, China
下载:  全 文 ( PDF ) ( 6399KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 掺杂不同含量的石墨烯、碳纳米管、纳米银、银包铝粉作为导电增强相制备铝浆,将其印刷在氧化锌基片上并在680 ℃烧结得到铝电极,研究不同导电增强相对铝电极的导电性和附着力等性能的影响。采用四探针法测定铝电极方阻,通过二次烧结银电极,使用拉力试验机测定铝电极的附着力。采用扫描电镜(SEM)、X射线衍射仪(XRD)等手段对掺杂导电增强相铝电极的显微组织、形貌及成分等进行表征。结果表明:碳纳米管和石墨烯的掺杂量分别为1%、2%(质量分数,下同)时,铝电极导电性的提高效果较好,当掺杂量分别高于1.5%、3%时,铝电极表面形貌及组织会被破坏,导致铝电极导电能力差、附着力低;掺杂纳米银对铝电极导电性的提高效果最好,掺杂后铝电极表面平滑光整、组织致密均匀、金属光泽度高、附着力好。掺杂6%纳米银制备S3组铝电极,测定其平均方阻为0.22 Ω/□,该铝电极与氧化锌基体的附着力达到8.9 N/mm2。同时,为了探究铝电极的稳定性,实验测定了掺杂不同导电增强相的铝电极在室温60 d内的电阻变化率。结果表明:各组铝电极电阻在室温环境下变化均较小,掺杂纳米银的铝电极电阻变化率最小,为0.98%;掺杂碳纳米管的铝电极电阻变化率最大,为1.52%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪冲
朱晓云
龙晋明
关键词:  掺杂  铝电极  导电增强相    
Abstract: Doped with different contents of graphene, carbon nanotubes, nano silver, silver-coated aluminum powder as the conductive reinforcement phase to prepare aluminum paste, printed it on a zinc oxide substrate and sintered at 680 ℃ to obtain aluminum electrodes, and studied the different conductive enhanced The effect of electrode conductivity and performance. The square resistance of the aluminum electrode was measured by the four-probe method, and the adhesion of the aluminum electrode was measured by a tensile tester using a secondary sintered silver electrode. The metallographic microscope, scanning electron microscope (SEM), X-ray diffractometer (XRD) and other methods were used to characterize the fiber structure, morphology and composition of the aluminum electrode doped with conductive enhanced phase. The results show that the doping content of carbon nanotubes and graphene is better at 1% and 2%, respectively. Higher than 1.5% and 3% will destroy the surface morphology of aluminum electrode, aluminum electrode has poor conductivity and low adhesion. The effect of doped nano-silver is the best, the surface of the aluminum electrode is smooth and smooth, the tissue is dense and uniform, the metal silver, and the average square resistance was determined to be 0.22 Ω/□, and the adhesion to the zinc oxide substrate reached 8.9 N/mm2. At the same time, in order to determine the stability of the aluminum electrode, the resistance change rate of the aluminum electrode doped with different conductive reinforcing phases was measured experimentally at room temperature for 60 days. The results show that the changes in the ambient temperature of each group of aluminum electrodes are relatively small. The resistance change of the aluminum electrode doped with nano-silver is a minimum of 0.98%; the resistance change of the aluminum electrode doped with carbon nanotubes is a maximum of 1.52%.
Key words:  doped    aluminum electrode    conductive enhanced phase
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TM2  
  TB34  
基金资助: 昆明理工大学分析测试基金(2018M20172230025)
通讯作者:  2390972252@qq.com   
作者简介:  汪冲,昆明理工大学,硕士研究生。主要从事研究方向为电子浆料的制备与性能研究,超细铜粉体的制备
朱晓云,昆明理工大学,教授,硕士研究生导师。2010.09获昆明理工大学冶金系博士学位 ;2008.01—2009.01澳大利亚西澳大学访问学者;2016.07—2016.19美国中密执根大学访问学者。编著出版了《有色金属特种功能粉体材料制备技术及应用》一书;获中国有色金属工业技术发明一等奖一项,获省部级科技进步奖4项,发明专利金奖2项,昆明市科技进步一等奖一项;获授权发明专利5项。在国内外学术刊物发表论文60余篇,其中被SCI和EI检索的论文20余篇。主要研究方向为微电子工业用电子浆料研发及制备;特种功能粉体材料研发及制备。
引用本文:    
汪冲, 朱晓云, 龙晋明. 掺杂导电增强相对铝电极性能的影响[J]. 材料导报, 2021, 35(8): 8082-8087.
WANG Chong, ZHU Xiaoyun, LONG Jinming. Effect of Doping Conduction Enhancement on the Performance of Aluminum Electrode. Materials Reports, 2021, 35(8): 8082-8087.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020149  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8082
1 Lu G G, Xuan T P. Metallic Functional Materials,2008,15(1),48(in Chinese).
陆广广,宣天鹏.金属功能材料,2008,15(1),48.
2 Li Q, Xie Q, Ma R, et al. Materials Reports A:Review Papers,2014,28(4),31(in Chinese).
李强,谢泉,马瑞,等.材料导报:综述篇,2014,28(4),31.
3 Han W. In: The 1 8th Annual Conference of the Institute of Sensitive Technology Branch of China Electronics Society. 2011, Chengdu, pp.30.
4 Sun W T. Electronic Components and Materials,1997,16(3),14(in Chinese).
孙文通.电子元件与材料,1997,16(3),14.
5 Fan L. Insulators and Surge Arresters,2015,138(6),107(in Chinese).
范琳.电瓷避雷器,2015,138(6),107.
6 Shang R Q, Qu Y H, Cheng X L, et al. Journal of Xi'an Polytechnic University,2016,30(6),802(in Chinese).
尚润琪,屈银虎,成小乐,等.西安工程大学学报,2016,30(6),802.
7 Liu X N, Qu Y H, Cheng X L, et al. New Chemical Materials,2018,46(11),67(in Chinese).
刘晓妮,屈银虎,成小乐,等.化工新型材料,2018,46(11),67.
8 Jin Hong. Preparation of nano-silver and micro-silver-coated copper mixed slurry and performance of sintered solder joints. Master's Thesis, South China University of Technology, China,2017(in Chinese).
金虹.纳米银与微米银包铜混合浆料的制备及烧结焊点的性能研究.硕士学位论文,华南理工大学,2017.
9 Zhang Zhenhua, Guo Zhongcheng, Xiao Hongliang. Electroplating and Finishing,2007,26(1),28(in Chinese).
张振华,郭忠诚,肖红亮.电镀与涂饰,2007,26(1),28.
10 Kirkpatrick S. Reviews of Modern Physics,1973,45,574.
11 Ruschau G R, Yashikawa S, Newnham R E. Journal of Applied Physics,1992,72,953.
12 Landauer R. Electrical Conductivity in Inhomogeneous Media,1978,40,2.
13 Biswas A, Aktas O C, Schurmann U, et al. Applied Physics Letters,2004,84,2655.
14 Ma Xiaoqiang, Zhu Xiaoyun, Long Jinming, et al. Chinese Journal of Materials Research,2017,31(6),472(in Chinese).
马小强,朱晓云,龙晋明等.材料研究学报,2017,31(6),472.
15 Cao W, Song X M ,Wang B, et al. Materials Review,2007,21(S1),88(in Chinese).
曹伟,宋雪梅,王波,等.材料导报,2007,21(S1),88.
16 Wang X J, Wang Q, Yu Y M, et al. Conductive Ink,2019,40(2),45(in Chinese).
王小菊,王琪,于艺铭,等.贵金属,2019,40(2),45.
17 Xiong N N, Wang Y H, Li J Z. Rare Metal Materials and Engineering,2015,44(10),2589(in Chinese).
熊娜娜,王悦辉,李晶泽.稀有金属材料程,2015,44(10),2589.
18 Luo Q, Jiang C B, Huang W X, et al. Journal of Materials Research,2019,33(2),131(in Chinese).
骆迁,姜朝斌,黄万雄,等.材料研究学报,2019,33(2),131.
19 Zhou G J, Ye Z K, Shi W W, et al. Progress in Chemistry,2014,26(6),950(in Chinese).
周国珺,叶志凯,石微微,等.化学进展,2014,26(6),950.
20 Wang A Z, Lv M G. Chinese Polymer Bulletin,2006(5),65(in Chinese).
王安之,吕满庚.高分子通报,2006(5),65.
21 Chen Q X. Electronic Components & Materials,2006,26(3),46(in Chinese).
陈群星.电子元件与材料,2006,26(3),46.
[1] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[2] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[3] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[4] 邱宇, 朱俊, 周云霞, 李康, 张钰. Al掺杂浓度对Hf0.5Zr0.5O2薄膜铁电性能的影响[J]. 材料导报, 2021, 35(2): 2001-2005.
[5] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[6] 彭仁强, 李娜, 陈倩霞. 掺杂金属元素对Fe3O4纳米材料磁性性质影响的研究进展[J]. 材料导报, 2020, 34(Z2): 74-77.
[7] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[8] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[9] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[10] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[11] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[12] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[13] 王瑞, 赵宣, 赵丽娟, 闫静, 田晓, 姚占全. 微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展[J]. 材料导报, 2020, 34(7): 7146-7153.
[14] 彭增伟, 刘保亭. 外延掺锰铁酸铋薄膜电容器的光电导和光伏效应[J]. 材料导报, 2020, 34(6): 6010-6014.
[15] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed