Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8136-8140    https://doi.org/10.11896/cldb.19030096
  金属及金属基复合材料 |
Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能
申兰先1, 陈家莉1, 李德聪2, 刘文婷1, 葛文1, 邓书康1
1 云南师范大学可再生能源材料先进技术与制备教育部重点实验室, 云南省农村能源工程重点实验室,太阳能研究所,昆明 650500;
2 云南开放大学光电工程学院,昆明 650500
Preparation and Thermoelectric Properties of Yb Doped Type-Ⅷ YbxBa8-xGa16Sn30 Clathrate
SHEN Lanxian1, CHEN Jiali1, LI Decong2, LIU Wenting1, GE Wen1, DENG Shukang1
1 Solar Energy Research Institution, Yunnan Provincial Renewable Energy Engineering Key Lab, Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming 650500, China;
2 College of Optoelectronic Engineering, Yunnan Open University, Kunming 650500, China
下载:  全 文 ( PDF ) ( 3435KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用Sn熔剂法成功制备出Yb掺杂Ⅷ型笼合物YbxBa8-xGa16Sn30(0≤x≤2)热电材料,通过测试其电导率、Seebeck系数和Hall系数等分析材料的电性能,并估算其ZT值。结果表明:掺入Yb后,材料的晶格常数随Yb含量的增加而减小。x=1.5样品的电导率在整个测试温度范围内均比其余样品高,相比x=0的样品,其电导率提高了约60%,这是由于在载流子迁移率相当的情况下该样品拥有较高的载流子浓度。此外,在300~583 K范围内,样品的电导率随温度的升高而降低,表现出重掺杂半导体特性;而在583 K以后,电导率随温度的升高而增大,表现出半导体特性。在测试温度范围内(300~600 K),所有样品的Seebeck系数绝对值均随温度的升高先增大后降低。在所有样品中,x=1.5的样品具有最高的电导率,其在489 K时获得最大功率因子,为2.43×10-3 W/(m·K2),在此温度下其ZT值为1.35。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申兰先
陈家莉
李德聪
刘文婷
葛文
邓书康
关键词:  Yb掺杂  热电材料  Ⅷ型笼合物  热电性能    
Abstract: In this work, a successful effort was made in growing Yb-doped type-Ⅷ YbxBa8-xGa16Sn30 clathrate thermoelectric materials via a Sn-flux method.The electrical conductivity, Seebeck coefficient, and Hall coefficient of these samples were measured to analyze their electrical pro-perties,and ZT values were estimated. The results showed that the lattice constant of the material decreased with the increase of Yb content.The conductivity of the sample with x=1.5 was higher than that of other samples in the whole test temperature range, and the conductivity was improved by about 60% compared with that of the sample with x=0, which was due to higher carrier concentration when carrier mobility was comparable.In addition, the conductivity of the samples from 300 K to 583 K decreased with the increase of temperature, showing the characteristics of degenerate semiconductor. After 583 K, the conductivity increased with the increase of temperature, showing the characteristics of semiconductor. Within the test temperature range (300—600 K), the absolute value of Seebeck coefficient for all samples initially increased to a maximum value and subsequently decreased with the increase of temperature. The sample with x=1.5 obtained a large power factor with the maximum va-lue of 2.43×10-3 W/(m·K2) (at 489 K)due to its high conductivity, and the estimated ZT obtained a maximum value of 1.35 at 489 K.
Key words:  Yb doped    thermoelectric materials    type-Ⅷ clathrate    thermoelectric properties
                    发布日期:  2020-04-25
ZTFLH:  Q472+.7  
基金资助: 国家自然科学基金(61864012;21701140)
通讯作者:  skdeng@126.com   
作者简介:  申兰先,云南师范大学能源与环境科学学院,讲师。2016年12月获云南师范大学农业生物环境与能源工程专业工学博士学位,主要从事新能源材料与器件的研发。
邓书康,云南师范大学能源与环境科学学院,教授。2008年6月获武汉理工大学工学博士学位,主要从事新能源材料与器件的研发。
引用本文:    
申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
SHEN Lanxian, CHEN Jiali, LI Decong, LIU Wenting, GE Wen, DENG Shukang. Preparation and Thermoelectric Properties of Yb Doped Type-Ⅷ YbxBa8-xGa16Sn30 Clathrate. Materials Reports, 2020, 34(8): 8136-8140.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030096  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8136
1 Oiu P F, Liu R H, Yang J, et al. Journal of Applied Physics, 2012, 111(2), 023705.
2 Zhao W Y, Wei P, Zhang Q J, et al. Journal of American Chemical So-ciety, 2009, 131(10), 3713.
3 Li H, Tang X F, Zhang Q J, et al. Applied Physics Letters, 2009, 94(10),102114.
4 Mano S, Onimaru T, Yamanaka S, et al. Physical Review B, 2011, 84(21),214101.
5 Ishii I, Suetomi Y, Fujita T K, et al. Physical Review B, 2012, 85(8),085101.
6 Zhu X H, Chen N, Liu L H, et al. Journal of Applied Physics, 2012,111(7), 07E305.
7 Du B, Saiga Y, Kajisa K, et al. Journal of Applied Physics, 2012, 111(1), 013707.
8 Du B, Saiga Y, Kajisa K, et al. Chemistry of Materials, 2015, 27(5),1830.
9 Wang H F, Cai K F, Li H, et al. Key Engineering Materials, 2008, 368-372,553.
10 Saramat A, Svensson G, Palmqvist A E C, et al. Journal of Applied Physics, 2006, 99(2),023708.
11 Christensen M, Juranyi F, Iversen B B. Physica B:Condensed Matter, 2006, 385-386,505.
12 Nolas G S, Cohn J L, Slack G A, et al. Applied Physics Letters, 1998, 73,178.
13 Kim J H, Okamoto L N, Kishida K. Materials Research Society, 2007,980,217.
14 Cedekrant D Z, Smart A, Snyder G J, et al. Journal of Applied Physics, 2009, 106(7),074509.
15 Okamoto N L, Kishida K, Tanaka K, et al. Journal of Applied Physics, 2006,100(7),073504.
16 Deng S K, Saiga Y, Suekuni K, et al. Journal of Applied Physics, 2010, 108(7),073705.
17 Deng S K, Saiga Y, Kajisa K, et al. Journal of Applied Physics, 2011, 109(10),103704.
18 Tang X F, Li P, Deng S K, et al. Journal of Applied Physics, 2008, 104(1), 013706.
19 Cohn J L, Nolas G S, Fessatidis V, et al. Physical Review Letters, 1999, 82(4),779.
20 Shi X, Kong H,Li C P, et al. Applied Physics Letters, 2008, 92(18),182101.
21 Liu L H, Li F, Wei Y P, et al. Journal of Alloys and Compounds, 2014, 588,271.
22 Liu L H, Wei Y P, Yang S W, et al. International Journal of Modern Physics B, 2014, 28(23),94.
23 Shen L X, Li D C, Liu H X, et al. Journal of Synthetic Crystals, 2015, 44, 2810(in Chinese).
申兰先, 李德聪, 刘虹霞,等.人工晶体学报, 2015, 44,2810.
24 Cutler M, Leavy J F, Fitzpatrick R L. Physical Review, 1964, 133,A1143.
25 Heremans J P, Jovovic V, Toberer E S, et al. Science, 2008, 321(5888),554.
26 Sasaki Y, Kishimoto K, Koyanagi T, et al. Journal of Applied Physics, 2009, 105(7), 073702.
27 Martin J, Nolas G S, Wang H, et al. Journal of Applied Physics, 2007, 102,103719.
28 Blake N P, Latturner S, Bryan J D, et al. Journal of Chemical Physics, 2002, 116(21),9545.
29 Kuznetsov V L, Kuznetsova L A, Kaliazin A E, et al. Journal of Applied Physics, 2000, 87(11),7871.
[1] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[2] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[3] 林锦豪, 谢华清, 吴子华, 李奕怀, 王元元. Cu2-xS和Cu2-xSe类液态材料的可控制备与热电性能研究进展[J]. 材料导报, 2020, 34(7): 7071-7081.
[4] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[5] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[6] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[7] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[8] 李佳琪, 刘光华, 吴晓明, 贺刚, 杨增朝, 李江涛. 混料方式对燃烧合成Cu2Se的热电性能的影响[J]. 材料导报, 2019, 33(18): 3147-3151.
[9] 李怀明, 孙秋, 宋英. W掺杂对Zn0.98Al0.02O陶瓷热电性能的影响[J]. 材料导报, 2019, 33(12): 1959-1962.
[10] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[11] 袁大超, 郭双, 郝建军, 马跃进, 王淑芳. 脉冲激光沉积c轴取向BiCuSeO外延薄膜及其热电性能[J]. 材料导报, 2019, 33(1): 152-155.
[12] 吴艳光,羿庄城,葛震,杜飞鹏,张云飞. 提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 26-31.
[13] 冯波, 李光强, 张城诚, 李亚伟, 贺铸, 樊希安. 温差发电用BiCuSeO基热电材料的研究进展*[J]. 材料导报, 2017, 31(21): 24-31.
[14] 魏 剑, 赵莉莉, 张 倩, 聂证博. 碳纤维水泥基复合材料Seebeck效应研究现状[J]. 材料导报, 2017, 31(1): 84-89.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed