Review of BiCuSeO-based Thermoelectric Materials for Thermoelectric Generation
FENG Bo1,2, LI Guangqiang1,2, ZHANG Chengcheng1,2, LI Yawei1,2, HE Zhu1,2, FAN Xi’an1,2
1 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081; 2 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
Abstract: BiCuSeO based thermoelectric material with low thermal conductivity, high Seebeck coefficients and excellent thermoelectric properties, rich raw material storage, safety and non-toxicity, are considered to be a novel thermoelectric conversion material with the potential application. We first introduced the basic characteristics of BiCuSeO based compounds such as the crystal structure, electronic structure and thermoelectric properties, then analyzed the preparation methods, and reviewed the means of improving their thermoelectric properties including the doping of low-valance elements such as Na, Ag, Mg, Ca, Sr, Ba, Cu deficiencies, dual vacancies, band gap tuning, grain refinement, texturing and modulation doping etc. The highest ZT value has been increased from ~0.4 to 1.5 by the co-regulation of the electric-thermal transport characteristics. Finally, the research direction for further improvement of the thermoelectric properties of BiCuSeO based materials is summarized.
1 Li F, Li J F, Zhao L D, et al. Polycrystalline BiCuSeO oxide as a potential thermoelectric material[J]. Energy Environmental Sci, 2012,5(5):7188. 2 Liu Y, Zhao L D, Zhu Y, et al. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach[J]. Adv Energy Mater, 2016,6(9):312. 3 Palazzi M, Jaulmes S. Structure du conducteur ionique (LaO) AgS[J]. Acta Crystallographica Section B, 1981,37(7):1337. 4 Ohtani T, Hirose M, Sato T, et al. Synthesis and some physical properties of a new series of layered selenides (LnO) CuSe (Ln=lanthanides)[J]. Jpn J Appl Phys, 1993,32(S3):316. 5 Sekizawa K, Takano Y, Mori K, et al. Magnetic and transport properties of layered oxysulfides (La1-xCaxO) Cu1-yNiyS (y=0 and y=x)[J]. Czechoslovak J Phys, 1996,46(4):1943. 6 Takano Y, Ogawa C, Miyahara Y, et al. Single crystal growth of (LaO) CuS[J]. J Alloys Compd, 1997,249(1):221. 7 Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1-xFx] FeAs (x=0.05-0.12) with Tc=26 K[J]. J Am Chem Soc, 2008,130(11):3296. 8 Ueda K, Inoue S, Hosono H, et al. Room-temperature excitons in wide-gap layered-oxysulfide semiconductor: LaCuOS[J]. Appl Phys Lett, 2001,78(16):2333. 9 Zhao L D, He J, Berardan D, et al. BiCuSeO oxyselenides: New promising thermoelectric materials[J]. Energy Environmental Sci, 2014,7(9):2900. 10Sui J, Li J, He J, et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides[J]. Energy Environ Sci, 2013,6(10):2916. 11Pei Y L, Wu H, Wu D, et al. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping[J]. J Am Chem Soc, 2014,136(39):13902. 12Barreteau C, Pan L, Amzallag E, et al. Layered oxychalcogenide in the Bi-Cu-O-Se system as good thermoelectric materials[J]. Semiconductor Sci Technol, 2014,29(6):064001. 13Pele V, Barreteau C, Berardan D, et al. Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying[J]. J Solid State Chem, 2013,203:187. 14Wu J, Li F, Wei T R, et al. Mechanical alloying and spark plasma sintering of BiCuSeO oxyselenide: Synthesis process and thermoelectric properties[J]. J Am Ceram Soc, 2016,99(2):507. 15Kou Kaichang, Yang Yanqing. Self propagating combustion synthesis of MoSi2-WSi2 composite system[J]. Rare Metal Mater Eng, 2000,29(3):190(in Chinese). 寇开昌, 杨延清. MoSi2-WSi2 复合体系的自蔓延燃烧合成[J]. 稀有金属材料与工程, 2000,29(3):190. 16Wang Shenghong, Zhang Yingcai, Han Wencheng, et al. Study on self propagating high temperature synthesis of silicon nitride[J]. Powder Metall Ind, 2004,14(5):1(in Chinese). 王声宏, 张英才, 韩文成, 等. 自蔓延高温合成氮化硅的研究[J]. 粉末冶金工业, 2004,14(5):1. 17Zhai Xiangwei, Lin Yirong, Zhong Honghai, et al. Preparation and thermoelectric properties of NaF doped Ca3Co4O9 powders[J]. Powder Metall Ind, 2012,22(3):16(in Chinese). 翟向伟, 林逸榕, 仲洪海, 等. NaF 掺杂的 Ca3Co4O9粉体制备及其热电性能研究[J]. 粉末冶金工业, 2012,22(3):16. 18Zhong Honghai, Chen Defang, Lin Yirong, et al. Preparation of Na1.7Co2O4-xFx and its thermoelectric properties[J]. Proceedings of the Chinese Academy of Sciences, 2012,7(2):111(in Chinese). 仲洪海, 陈德方, 林逸榕, 等. Na1. 7Co2O4-xFx的制备及其热电性能[J]. 中国科技论文, 2012,7(2):111. 19Su X, Fu F, Yan Y, et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing[J]. Nature Commun, 2014,5:4908. 20Ren G K, Butt S, Ventura K J, et al. Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis[J]. RSC Adv, 2015,5(85):69878. 21Li J, Sui J, Pei Y, et al. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides[J]. Energy Environ Sci, 2012,5(9):8543. 22Liu Y, Lan J L, Zhan B, et al. Thermoelectric properties of Pb-doped BiCuSeO ceramics[J]. J Am Ceram Soc, 2013,96(9):2710. 23Liu Y, Zheng Y, Zhan B, et al. Influence of Ag doping on thermoelectric properties of BiCuSeO[J]. J Eur Ceram Soc, 2015,35(2):845. 24Lan J L, Zhan B, Liu Y C, et al. Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide[J]. Appl Phys Lett, 2013,102(12):123905. 25Zhang M, Yang J, Jiang Q, et al. Multi-role of sodium doping in BiCuSeO on high thermoelectric performance[J]. J Electron Mater, 2015,44(8):2849. 26Barreteau C, Bérardan D, Zhao L D, et al. Influence of Te substitution on the structural and electronic properties of thermoelectric BiCuSeO[J]. J Mater Chem A, 2013,1(8):2921. 27Liu Y, Ding J, Xu B, et al. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure[J]. Appl Phys Lett, 2015,106(23):233903. 28Yang Y, Liu X, Liang X. Thermoelectric properties of Bi1-x Snx-CuSeO solid solutions[J]. Dalton Trans, 2017,46(8):2510. 29Luu S D N, Vaqueiro P. Thermoelectric properties of BiOCu1-x-MxSe (M=Cd and Zn)[J]. Semiconductor Sci Technol, 2014,29(6):064002. 30Li J, Sui J, Barreteau C, et al. Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides[J]. J Alloys Compd, 2013,551:649. 31Pei Y L, He J, Li J F, et al. High thermoelectric performance ofoxyselenides: Intrinsically low thermal conductivity of Ca-doped BiCuSeO[J]. NPG Asia Mater, 2013,5(5):e47. 32Barreteau C, Beérardan D, Amzallag E, et al. Structural and electronic transport properties in Sr-doped BiCuSeO[J]. Chem Mater, 2012,24(16):3168. 33Novitskii A P, Voronin A I, Usenko A A, et al. Influence of sodium fluoride doping on thermoelectric properties of BiCuSeO[J]. J Electron Mater, 2016,45(3):1705. 34Lee D S, An T H, Jeong M, et al. Density of state effective mass and related charge transport properties in K-doped BiCuOSe[J]. Appl Phys Lett, 2013,103(23):232110. 35Ren G, Butt S, Zeng C, et al. Electrical and thermal transport behavior in Zn-doped BiCuSeO oxyselenides[J]. J Electron Mater, 2015,44(6):1627. 36Farooq M U, Butt S, Gao K, et al. Cd-doping a facile approach for better thermoelectric transport properties of BiCuSeO oxyselenides[J]. RSC Adv, 2016,6(40):33789. 37Wen Q, Zhang H, Xu F, et al. Enhanced thermoelectric perfor-mance of BiCuSeO via dual-doping in both Bi and Cu sites[J]. J Alloys Compd, 2017,711:434. 38Liu Y, Zhao L D, Liu Y, et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies[J]. J Am Chem Soc, 2011,133(50):20112. 39Li Z, Xiao C, Fan S, et al. Dual vacancies: An effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO[J]. J Am Chem Soc, 2015,137(20):6587. 40Wang H, Gibbs Z M, Takagiwa Y, et al. Tuning bands of PbSe for better thermoelectric efficiency[J]. Energy Environmental Sci, 2014,7(2):804. 41Pei Y, Heinz N A, Lalonde A, et al. Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride[J]. Energy Environmental Sci, 2011,4(9):3640. 42Liu Y, Lan J, Xu W, et al. Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning[J]. Chem Commun, 2013,49(73):8075. 43Berardan D, Li J, Amzallag E, et al. Structure and transport pro-perties of the BiCuSeO-BiCuSO solid solution[J]. Materials, 2015,8(3):1043. 44Farooq M U, Butt S, Gao K, et al. Improved thermoelectric performance of BiCuSeO by Ag substitution at Cu site[J]. J Alloys Compd, 2017,691:572. 45Zhao L D, Zhang B P, Li J F, et al. Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering[J]. Physica B: Condensed Matter, 2007,400(1):11. 46Yan X, Poudel B, Ma Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3[J]. Nano Lett, 2010,10(9):3373. 47Hu L, Gao H, Liu X, et al. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects[J]. J Mater Chem, 2012,22(32):16484. 48Zebarjadi M, Joshi G, Zhu G, et al. Power factor enhancement by modulation doping in bulk nanocomposites[J]. Nano Lett, 2011,11(6):2225. 49Yu B, Zebarjadi M, Wang H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites[J]. Nano Lett, 2012,12(4):2077. 50Jiang Hongyi. Synthesis of Mg2Si based compounds by solid phase reaction [D]. Wuhan:Wuhan University of Technology, 2003. 姜洪义. Mg2Si 基化合物的固相反应合成[D]. 武汉:武汉理工大学, 2003. 51Li E, Wang N, He H, et al. Improved thermoelectric performances of SrTiO3 ceramic doped with Nb by surface modification of nano-sized titania[J]. Nanoscale Res Lett, 2016,11(1):1. 52Liu Y, Zhou Y, Lan J, et al. Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides[J]. J Alloys Compd, 2016,662:320. 53Muhammad, Umer, Farooq, et al. Enhanced thermoelectric transport properties of La0.98Sr0.02CoO3-BiCuSeO composite[J]. J Electr Eng, 2016,4(2):52. 54Pei Y, Shi X, Lalonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011,473(7345):66. 55Liu W, Tan X, Yin K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-x-Snxsolid solutions[J]. Phys Rev Lett, 2012,108(16):166601.