Please wait a minute...
材料导报  2017, Vol. 31 Issue (21): 24-31    https://doi.org/10.11896/j.issn.1005-023X.2017.021.004
  材料综述 |
温差发电用BiCuSeO基热电材料的研究进展*
冯波1, 2, 李光强1, 2, 张城诚1, 2, 李亚伟1, 2, 贺铸1, 2, 樊希安1, 2
1 武汉科技大学钢铁冶金及资源利用省部共建教育部重点实验室,武汉 430081;
2 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Review of BiCuSeO-based Thermoelectric Materials for Thermoelectric Generation
FENG Bo1,2, LI Guangqiang1,2, ZHANG Chengcheng1,2, LI Yawei1,2, HE Zhu1,2, FAN Xi’an1,2
1 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081;
2 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
下载:  全 文 ( PDF ) ( 1960KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 BiCuSeO基热电材料由于具有较低的热导率和较高的Seebeck系数,热电性能优异,且原料储藏丰富、价格低廉、安全无毒,被认为是一种具有潜在应用前景的新型热电转换材料。首先介绍了BiCuSeO基材料的晶体结构、电子结构、热电性能等基本特征,随后综述了近年来国内外关于BiCuSeO基热电材料的研究进展,评述了提高其热电性能的手段,包括Na、Ag、Mg、Ca、Sr、Ba等低价元素掺杂,铜空位,双空位,带隙调整,晶粒细化,织构化和调制掺杂等。通过电热输运特性的协同调控,可使其ZT值从未掺杂样品的0.4左右提高到1.5。最后从实际应用的角度出发提出了今后BiCuSeO基热电材料的研究方向及研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯波
李光强
张城诚
李亚伟
贺铸
樊希安
关键词:  热电材料  氧硫族化合物  BiCuSeO  热电性能    
Abstract: BiCuSeO based thermoelectric material with low thermal conductivity, high Seebeck coefficients and excellent thermoelectric properties, rich raw material storage, safety and non-toxicity, are considered to be a novel thermoelectric conversion material with the potential application. We first introduced the basic characteristics of BiCuSeO based compounds such as the crystal structure, electronic structure and thermoelectric properties, then analyzed the preparation methods, and reviewed the means of improving their thermoelectric properties including the doping of low-valance elements such as Na, Ag, Mg, Ca, Sr, Ba, Cu deficiencies, dual vacancies, band gap tuning, grain refinement, texturing and modulation doping etc. The highest ZT value has been increased from ~0.4 to 1.5 by the co-regulation of the electric-thermal transport characteristics. Finally, the research direction for further improvement of the thermoelectric properties of BiCuSeO based materials is summarized.
Key words:  thermoelectric materials    oxyselenides    BiCuSeO    thermoelectric properties
出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TG15  
基金资助: *国家自然科学基金面上项目(11074195;51674181);湖北省教育厅重点项目(D20151103);武汉市黄鹤英才计划
作者简介:  冯波:男,博士研究生,研究方向为BiCuSeO基热电材料樊希安:男,教授,研究方向为热电材料与器件 E-mail:groupfxa@163.com
引用本文:    
冯波, 李光强, 张城诚, 李亚伟, 贺铸, 樊希安. 温差发电用BiCuSeO基热电材料的研究进展*[J]. 材料导报, 2017, 31(21): 24-31.
FENG Bo, LI Guangqiang, ZHANG Chengcheng, LI Yawei, HE Zhu, FAN Xi’an. Review of BiCuSeO-based Thermoelectric Materials for Thermoelectric Generation. Materials Reports, 2017, 31(21): 24-31.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.004  或          https://www.mater-rep.com/CN/Y2017/V31/I21/24
1 Li F, Li J F, Zhao L D, et al. Polycrystalline BiCuSeO oxide as a potential thermoelectric material[J]. Energy Environmental Sci, 2012,5(5):7188.
2 Liu Y, Zhao L D, Zhu Y, et al. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach[J]. Adv Energy Mater, 2016,6(9):312.
3 Palazzi M, Jaulmes S. Structure du conducteur ionique (LaO) AgS[J]. Acta Crystallographica Section B, 1981,37(7):1337.
4 Ohtani T, Hirose M, Sato T, et al. Synthesis and some physical properties of a new series of layered selenides (LnO) CuSe (Ln=lanthanides)[J]. Jpn J Appl Phys, 1993,32(S3):316.
5 Sekizawa K, Takano Y, Mori K, et al. Magnetic and transport properties of layered oxysulfides (La1-xCaxO) Cu1-yNiyS (y=0 and y=x)[J]. Czechoslovak J Phys, 1996,46(4):1943.
6 Takano Y, Ogawa C, Miyahara Y, et al. Single crystal growth of (LaO) CuS[J]. J Alloys Compd, 1997,249(1):221.
7 Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1-xFx] FeAs (x=0.05-0.12) with Tc=26 K[J]. J Am Chem Soc, 2008,130(11):3296.
8 Ueda K, Inoue S, Hosono H, et al. Room-temperature excitons in wide-gap layered-oxysulfide semiconductor: LaCuOS[J]. Appl Phys Lett, 2001,78(16):2333.
9 Zhao L D, He J, Berardan D, et al. BiCuSeO oxyselenides: New promising thermoelectric materials[J]. Energy Environmental Sci, 2014,7(9):2900.
10Sui J, Li J, He J, et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides[J]. Energy Environ Sci, 2013,6(10):2916.
11Pei Y L, Wu H, Wu D, et al. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping[J]. J Am Chem Soc, 2014,136(39):13902.
12Barreteau C, Pan L, Amzallag E, et al. Layered oxychalcogenide in the Bi-Cu-O-Se system as good thermoelectric materials[J]. Semiconductor Sci Technol, 2014,29(6):064001.
13Pele V, Barreteau C, Berardan D, et al. Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying[J]. J Solid State Chem, 2013,203:187.
14Wu J, Li F, Wei T R, et al. Mechanical alloying and spark plasma sintering of BiCuSeO oxyselenide: Synthesis process and thermoelectric properties[J]. J Am Ceram Soc, 2016,99(2):507.
15Kou Kaichang, Yang Yanqing. Self propagating combustion synthesis of MoSi2-WSi2 composite system[J]. Rare Metal Mater Eng, 2000,29(3):190(in Chinese).
寇开昌, 杨延清. MoSi2-WSi2 复合体系的自蔓延燃烧合成[J]. 稀有金属材料与工程, 2000,29(3):190.
16Wang Shenghong, Zhang Yingcai, Han Wencheng, et al. Study on self propagating high temperature synthesis of silicon nitride[J]. Powder Metall Ind, 2004,14(5):1(in Chinese).
王声宏, 张英才, 韩文成, 等. 自蔓延高温合成氮化硅的研究[J]. 粉末冶金工业, 2004,14(5):1.
17Zhai Xiangwei, Lin Yirong, Zhong Honghai, et al. Preparation and thermoelectric properties of NaF doped Ca3Co4O9 powders[J]. Powder Metall Ind, 2012,22(3):16(in Chinese).
翟向伟, 林逸榕, 仲洪海, 等. NaF 掺杂的 Ca3Co4O9粉体制备及其热电性能研究[J]. 粉末冶金工业, 2012,22(3):16.
18Zhong Honghai, Chen Defang, Lin Yirong, et al. Preparation of Na1.7Co2O4-xFx and its thermoelectric properties[J]. Proceedings of the Chinese Academy of Sciences, 2012,7(2):111(in Chinese).
仲洪海, 陈德方, 林逸榕, 等. Na1. 7Co2O4-xFx的制备及其热电性能[J]. 中国科技论文, 2012,7(2):111.
19Su X, Fu F, Yan Y, et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing[J]. Nature Commun, 2014,5:4908.
20Ren G K, Butt S, Ventura K J, et al. Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis[J]. RSC Adv, 2015,5(85):69878.
21Li J, Sui J, Pei Y, et al. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides[J]. Energy Environ Sci, 2012,5(9):8543.
22Liu Y, Lan J L, Zhan B, et al. Thermoelectric properties of Pb-doped BiCuSeO ceramics[J]. J Am Ceram Soc, 2013,96(9):2710.
23Liu Y, Zheng Y, Zhan B, et al. Influence of Ag doping on thermoelectric properties of BiCuSeO[J]. J Eur Ceram Soc, 2015,35(2):845.
24Lan J L, Zhan B, Liu Y C, et al. Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide[J]. Appl Phys Lett, 2013,102(12):123905.
25Zhang M, Yang J, Jiang Q, et al. Multi-role of sodium doping in BiCuSeO on high thermoelectric performance[J]. J Electron Mater, 2015,44(8):2849.
26Barreteau C, Bérardan D, Zhao L D, et al. Influence of Te substitution on the structural and electronic properties of thermoelectric BiCuSeO[J]. J Mater Chem A, 2013,1(8):2921.
27Liu Y, Ding J, Xu B, et al. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure[J]. Appl Phys Lett, 2015,106(23):233903.
28Yang Y, Liu X, Liang X. Thermoelectric properties of Bi1-x Snx-CuSeO solid solutions[J]. Dalton Trans, 2017,46(8):2510.
29Luu S D N, Vaqueiro P. Thermoelectric properties of BiOCu1-x-MxSe (M=Cd and Zn)[J]. Semiconductor Sci Technol, 2014,29(6):064002.
30Li J, Sui J, Barreteau C, et al. Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides[J]. J Alloys Compd, 2013,551:649.
31Pei Y L, He J, Li J F, et al. High thermoelectric performance ofoxyselenides: Intrinsically low thermal conductivity of Ca-doped BiCuSeO[J]. NPG Asia Mater, 2013,5(5):e47.
32Barreteau C, Beérardan D, Amzallag E, et al. Structural and electronic transport properties in Sr-doped BiCuSeO[J]. Chem Mater, 2012,24(16):3168.
33Novitskii A P, Voronin A I, Usenko A A, et al. Influence of sodium fluoride doping on thermoelectric properties of BiCuSeO[J]. J Electron Mater, 2016,45(3):1705.
34Lee D S, An T H, Jeong M, et al. Density of state effective mass and related charge transport properties in K-doped BiCuOSe[J]. Appl Phys Lett, 2013,103(23):232110.
35Ren G, Butt S, Zeng C, et al. Electrical and thermal transport behavior in Zn-doped BiCuSeO oxyselenides[J]. J Electron Mater, 2015,44(6):1627.
36Farooq M U, Butt S, Gao K, et al. Cd-doping a facile approach for better thermoelectric transport properties of BiCuSeO oxyselenides[J]. RSC Adv, 2016,6(40):33789.
37Wen Q, Zhang H, Xu F, et al. Enhanced thermoelectric perfor-mance of BiCuSeO via dual-doping in both Bi and Cu sites[J]. J Alloys Compd, 2017,711:434.
38Liu Y, Zhao L D, Liu Y, et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies[J]. J Am Chem Soc, 2011,133(50):20112.
39Li Z, Xiao C, Fan S, et al. Dual vacancies: An effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO[J]. J Am Chem Soc, 2015,137(20):6587.
40Wang H, Gibbs Z M, Takagiwa Y, et al. Tuning bands of PbSe for better thermoelectric efficiency[J]. Energy Environmental Sci, 2014,7(2):804.
41Pei Y, Heinz N A, Lalonde A, et al. Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride[J]. Energy Environmental Sci, 2011,4(9):3640.
42Liu Y, Lan J, Xu W, et al. Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning[J]. Chem Commun, 2013,49(73):8075.
43Berardan D, Li J, Amzallag E, et al. Structure and transport pro-perties of the BiCuSeO-BiCuSO solid solution[J]. Materials, 2015,8(3):1043.
44Farooq M U, Butt S, Gao K, et al. Improved thermoelectric performance of BiCuSeO by Ag substitution at Cu site[J]. J Alloys Compd, 2017,691:572.
45Zhao L D, Zhang B P, Li J F, et al. Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering[J]. Physica B: Condensed Matter, 2007,400(1):11.
46Yan X, Poudel B, Ma Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3[J]. Nano Lett, 2010,10(9):3373.
47Hu L, Gao H, Liu X, et al. Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects[J]. J Mater Chem, 2012,22(32):16484.
48Zebarjadi M, Joshi G, Zhu G, et al. Power factor enhancement by modulation doping in bulk nanocomposites[J]. Nano Lett, 2011,11(6):2225.
49Yu B, Zebarjadi M, Wang H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites[J]. Nano Lett, 2012,12(4):2077.
50Jiang Hongyi. Synthesis of Mg2Si based compounds by solid phase reaction [D]. Wuhan:Wuhan University of Technology, 2003.
姜洪义. Mg2Si 基化合物的固相反应合成[D]. 武汉:武汉理工大学, 2003.
51Li E, Wang N, He H, et al. Improved thermoelectric performances of SrTiO3 ceramic doped with Nb by surface modification of nano-sized titania[J]. Nanoscale Res Lett, 2016,11(1):1.
52Liu Y, Zhou Y, Lan J, et al. Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides[J]. J Alloys Compd, 2016,662:320.
53Muhammad, Umer, Farooq, et al. Enhanced thermoelectric transport properties of La0.98Sr0.02CoO3-BiCuSeO composite[J]. J Electr Eng, 2016,4(2):52.
54Pei Y, Shi X, Lalonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011,473(7345):66.
55Liu W, Tan X, Yin K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-x-Snx solid solutions[J]. Phys Rev Lett, 2012,108(16):166601.
[1] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[2] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[3] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[4] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[5] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[6] 史燃, 张翔宇, 南波航, 徐桂英. Cu2Se热电忆阻器模拟计算与性能表征[J]. 材料导报, 2023, 37(13): 22010058-7.
[7] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[8] 董源, 徐桂英. GeTe热电材料的研究和进展[J]. 材料导报, 2022, 36(3): 20080307-10.
[9] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[10] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[11] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[12] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[13] 林锦豪, 谢华清, 吴子华, 李奕怀, 王元元. Cu2-xS和Cu2-xSe类液态材料的可控制备与热电性能研究进展[J]. 材料导报, 2020, 34(7): 7071-7081.
[14] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[15] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed