Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 22010058-7    https://doi.org/10.11896/cldb.22010058
  无机非金属及其复合材料 |
Cu2Se热电忆阻器模拟计算与性能表征
史燃, 张翔宇, 南波航, 徐桂英*
北京科技大学材料科学与工程学院,北京 100083
Simulation Calculation and Performance Analysis of Cu2Se Thermoelectric Memristor
SHI Ran, ZHANG Xiangyu, NAN Bohang, XU Guiying*
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 5333KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 忆阻器是一种可以通过改变电阻来储存信息或者进行计算的电路元件。但脉冲电路脉宽达到纳秒级较为困难,这限制了忆阻器改变电阻的速度。而脉冲激光器的脉宽很短,很容易达到纳秒级。Cu2Se是典型的在梯度温场作用下空穴和Cu+同时参与定向迁移的热电材料,在无梯度温场时Cu+迁移不可逆,并且热场或梯度温场是比电场、激光、氧化还原反应等所需能量低的能量转换形式,因此Cu2Se有可能成为一种消耗能量更低的可用温差驱动的热电忆阻器材料。本工作模拟建立了用脉冲激光器照射Cu2Se样品后在不同时刻厚度方向上的温度分布模型,根据其热电性能计算了不同位置的温差电势与电场强度,同时制备了Cu2Se热电忆阻器并测定了其电学性质。实验结果表明,厚度为70 μm、测试探针间距为1 mm的Cu2Se样品从高阻态转变为低阻态时需要的重置电压为0.47 V,从低阻态转变为高阻态时需要的重置电压为0.40 V,其重置电场强度小于0.5 V/mm,证明了Cu2Se热电材料不需要一个初始高电压来激发其忆阻器效应,给出了热电忆阻器的工作原理。计算结果,表明经脉冲激光作用后Cu2Se样品在厚度方向上的电场强度(50~0.56 V/mm)均大于电阻转变所需要的电场强度(0.5 V/mm),在理论上证明了用激光照射Cu2Se热电材料制作热电忆阻器件的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史燃
张翔宇
南波航
徐桂英
关键词:  热电材料  忆阻器  硒化亚铜  忆阻器效应  热电忆阻器    
Abstract: A memristor is a circuit element that can store information or perform calculations by changing its resistance. However, a pulse circuit with a pulse width of up to nanosecond is a difficult task, and limits the speed at which the memristor can change resistance. The pulse width of a pulsed laser is very short and can easily reach the nanosecond level. Cu2Se is a typical thermoelectric material with both hole and Cu+ as carriers under the graded temperature field. The movement of Cu+ is irreversible without graded temperature field. Besides, the energy consumption for establishing thermal or graded temperature field (10 000 ℃=1 eV) is much less than that for electric field, laser, oxidation-reduction reactions, etc. Therefore Cu2Se might be a kind of thermoelectric memristor material. In this work, the memristor electrical properties of Cu2Se samples were measured, and the temperature distribution models of Cu2Se samples at different times in the thickness direction were simulated. The thermoelectric potential and electric field intensity at different positions were calculated according to the thermoelectric property of Cu2Se. As the result, the electric field intensities of Cu2Se samples at different positions along the thickness direction after pulsed laser were obtained. The experimental results show that the direct voltage and inverse voltage of 70 μm thick Cu2Se samples with 1 mm probe spacing are 0.47 V and 0.40 V, respectively, Cu2Se thermoelectric materials do not need an initial high voltage to stimulate the memristor effect. Also, the mechanism of Cu2Se ther-moelectric memristor has been proposed. The calculation results indicate that the electric field intensities (50—0.56 V/mm)along the thickness direction is greater than the electric field intensities required for resistance transformation (0.5 V/mm). Therefore, the feasibility of laser irradiation Cu2Se thermoelectric memristor devices is proved theoretically.
Key words:  thermoelectric material    memristor    copper(I) selenium    memristor effect    thermoelectric memristor
发布日期:  2023-07-10
ZTFLH:  TN604  
基金资助: 国家重点研发计划 (2017YFF0204706);中央高校基本科研业务费专项资金(FRF-MP-18-005;FRF-MP-19-005);颠覆性创新资助项目(19-163-13-ZT-001-008-19)
通讯作者:  *徐桂英,1983 年本科、1995 年博士毕业于东北大学,1995—1998 年在清华大学进行博士后研究。长期从事高性能半导体热电材料与器件前沿的研究工作。目前的主要研究方向包括热电半导体材料和器件、热电输运参数测试的研究与仪器开发、化学电池关键材料。作为负责人完成相关国家自然科学基金项目2项,科技部“纳米863”项目1项、军品配套项目3项。发表相关论文80多篇,申请相关专利2项。徐桂英,1983 年本科、1995 年博士毕业于东北大学,1995—1998 年在清华大学进行博士后研究。长期从事高性能半导体热电材料与器件前沿的研究工作。目前的主要研究方向包括热电半导体材料和器件、热电输运参数测试的研究与仪器开发、化学电池关键材料。作为负责人完成相关国家自然科学基金项目2项,科技部“纳米863”项目1项、军品配套项目3项。发表相关论文80多篇,申请相关专利2项。xugy@mater.ustb.edu.cn   
作者简介:  †共同第一作者。史燃,2020年6月于南京工程学院获得工学学士学位。现为北京科技大学材料科学与工程学院硕士研究生,在徐桂英教授的指导下进行研究。目前主要研究领域为热电忆阻器。
张翔宇,2021年6月于北京科技大学获得工学学士学位。现为中国科学院物理所硕士研究生,目前主要研究领域为低温超导。
南波航,北京科技大学学士,东北大学硕士,在徐桂英老师的指导下攻读博士学位,主要研究方向为热电晶体管的性能与模拟计算。
引用本文:    
史燃, 张翔宇, 南波航, 徐桂英. Cu2Se热电忆阻器模拟计算与性能表征[J]. 材料导报, 2023, 37(13): 22010058-7.
SHI Ran, ZHANG Xiangyu, NAN Bohang, XU Guiying. Simulation Calculation and Performance Analysis of Cu2Se Thermoelectric Memristor. Materials Reports, 2023, 37(13): 22010058-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010058  或          http://www.mater-rep.com/CN/Y2023/V37/I13/22010058
1 Chua L. IEEE Transactions on Circuit Theory, 1971, 18(5), 507.
2 Hickmott T W. Journal of Applied Physics, 1962, 33(9), 2669.
3 Kozicki M N, Park M, Mitkova M. IEEE Transactions on Nanotechnology, 2005, 4(3), 331.
4 Waser R, Aono M. Nature Materials, 2007, 6(11), 833.
5 Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453(7191), 80.
6 Williams R. IEEE Spectrum, 2008, 45(12), 28.
7 Prodromakis T, Toumazou C, Chua L. Nature Materials, 2012, 11(6), 478.
8 Yan P, Li Y, Hui Y J, et al. Applied Physics Letters, 2015, 107(8), 83501.
9 Liu N, Yan P, Li Y, et al. Applied Physics A, 2018, 124(2), 143.
10 Jiang L, Xu L, Chen J W, et al. Applied Physics Letters, 2016, 109(15), 153506.
11 Zhang J J, Liu N, Sun H J, et al. Journal of Electronic Materials, 2016, 45(2), 1154.
12 Lian X, Wang M, Rao M, et al. Applied Physics Letters, 2017, 110(17), 173504.
13 Lian X, Wang M, Yan P, et al. Journal of Electroceramics, 2017, 39(1-4), 132.
14 Fullam S, Ray N J, Karpov E G. Superlattices and Microstructures, 2015, 82, 378.
15 Mikhaylov A N, Belov A I, Guseinov D V, et al. Materials Science and Engineering:B, 2015, 194, 48.
16 Nandakumar S R, Minvielle M, Nagar S, et al. Nano Letters, 2016, 16(3), 1602.
17 Kumar S, Graves C E, Strachan J P, et al. Advanced Materials, 2016, 28(14), 2772.
18 Driscoll T, Kim H T, Chae B G, et al. Applied Physics Letters, 2009, 95(4), 43503.
19 Fors R, Khartsev S I, Grishin A M. Physical Review B, 2005, 71(4), 045305.
20 Chudnovskii F A, Odynets L L, Pergament A L, et al. Journal of Solid State Chemistry, 1996, 122(1), 95.
21 Hinderman J. Technical Report, DOI:10. 2172/5434752.
22 Ema Y. Japanese Journal of Applied Physics, 1990, 29(10), 2098.
23 Tang J, Wang H, Lee D H, et al. Nano Letters, 2010, 10(10), 4279.
24 Liu H, Yuan X, Lu P, et al. Advanced Materials, 2013, 25(45), 6607.
25 Brown D R, Day T, Caillat T, et al. Journal of Electronic Materials, 2013, 42(7), 2014.
26 Zhong B, Zhang Y, Li W, et al. Applied Physics Letters, 2014, 105(12), 123902.
27 Qiu P, Zhang T, Qiu Y, et al. Energy & Environmental Science, 2014, 7(12), 4000.
28 Bailey T P, Hui S, Xie H, et al. Journal of Materials Chemistry A, 2016, 4(43), 17225.
29 Olvera A A, Moroz N A, Sahoo P, et al. Energy & Environmental Science, 2017, 10(7), 1668.
30 Bhattacharya D, Singh R K, Holloway P H. Journal of Applied Physics, 1991, 70(10), 5433.
31 Zhao F Y, Zhang J, Wang C. Journal of Changchun University, 2011, 21(12), 73 (in Chinese).
赵凤艳, 张季, 汪超.长春大学学报, 2011, 21(12), 73
32 Yang L L, Qin Y H, Wei J T, et al. Acta Physica Sinica, 2021, 70(7), 7 (in Chinese).
杨亮亮, 秦源浩, 魏江涛, 等.物理学报, 2021, 70(7), 7.
33 Zheng H T. Study on synthesis and performance of Cu2Se based thermoelectric materials. Master's Thesis, University of Science and Technology Beijing, China, 2019 (in Chinese).
郑浩田.Cu2Se 基热电材料的制备及性能研究. 硕士学位论文, 北京科技大学, 2019.
34 Dongale T D, Khot K V, Mali S S, et al. Materials Science in Semiconductor Processing, 2015, 40, 523.
[1] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[2] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[3] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[4] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[5] 董源, 徐桂英. GeTe热电材料的研究和进展[J]. 材料导报, 2022, 36(3): 20080307-10.
[6] 曹青, 熊礼苗, 李鹏程. 二维忆阻材料及其阻变机理研究进展[J]. 材料导报, 2022, 36(21): 21040128-12.
[7] 陈晓平, 楼玉民, 赵宁宁, 黄一君, 胡海龙, 岳建岭. 基于异质结构忆阻器的研究进展[J]. 材料导报, 2022, 36(10): 20070058-10.
[8] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[9] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[10] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[11] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[12] 林锦豪, 谢华清, 吴子华, 李奕怀, 王元元. Cu2-xS和Cu2-xSe类液态材料的可控制备与热电性能研究进展[J]. 材料导报, 2020, 34(7): 7071-7081.
[13] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[14] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[15] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed