Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 22030042-8    https://doi.org/10.11896/cldb.22030042
  金属与金属基复合材料 |
合金元素Ni/Al对45Si2MnCr2Mo超高强韧钢冲击磨料磨损行为的影响
杨明1,2, 陈晓华3,*, 王自东1,3,*, 王艳林1, 左玲立2
1 北京科技大学材料科学与工程学院,北京 100083
2 北京机科国创轻量化科学研究院有限公司,北京100083
3 北京科技大学新金属材料国家重点实验室,北京 100083
Effect of Alloying Elements Ni/Al on Impact Abrasive Wear Behavior of 45Si2MnCr2Mo Ultra-high Strength Steel
YANG Ming1,2, CHEN Xiaohua3,*, WANG Zidong1,3,*, WANG Yanlin1, ZUO Lingli2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing National Innovation of Lightweight Ltd., Beijing 100083, China
3 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 14046KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对不同Ni/Al含量的强塑韧性良好的45Si2MnCr2Mo超高强韧钢,利用MLD-10冲击磨料磨损实验机对其进行了三体磨料磨损实验,系统研究了不同Ni/Al含量对超高强韧钢的磨损失重、硬化层深度以及磨损后表层及亚表层微观形貌的影响,并探讨了磨损机理。结果表明:Ni含量为3%时超高强韧钢的耐磨性最好,磨损百分比最低,为0.391%。当加入0.5%的Al后超高强韧钢的耐磨性降低了1.48,磨损百分比增加到0.42%。添加Ni元素能提高超高强韧钢的磨损性能,但当Al和Ni同时添加时反而不利于改善磨损性能。质量失重是由磨料的嵌入及剥落共同体现的。实验钢经冲击磨料磨损实验后表面和次表面区域通过加工硬化得到强化,Ni含量为3%时超高强韧钢拥有最佳的综合磨损后表面硬度、硬化百分比和有效硬化层深度,磨损过程更均匀。超高强韧钢的磨损形式主要为犁沟、剥落、裂纹、嵌入磨粒、犁沟浪花和挤压堆积。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨明
陈晓华
王自东
王艳林
左玲立
关键词:  超高强韧钢  冲击磨料磨损  磨损行为  冲击硬化    
Abstract: In this work, three-body abrasive wear experiments were carried out on 45Si2MnCr2Mo ultra-high strength steels with different Ni/Al contents by using the MLD-10 impact abrasive wear tester. The effects of different Ni/Al contents on the wear weight loss, the depth of hardened layer, and the microstructure of worn surface and subsurface of ultra-highstrength steel were systematically studied, and the wear mechanism was discussed. The results show that when the content of Ni was 3%, the wear resistance of ultra-high strength steel was the best, and the wear percentage was the lowest, which was only 0.391%. However, when 0.5% Al was added, the wear resistance decreased by 1.48, and the wear percentage increased to 0.42%. Therefore, the addition of Ni element can improve the wear performance, but it is not conducive to improve the wear performance when Al and Ni are added at the same time. The wear weight loss is reflected by the embedded quantity and size of abrasives, depression and spalling. After impact abrasive wear test, the surface and subsurface areas of ultra-high strength steel are strengt-hened by work hardening. When the content of Ni is 3%, the ultra-high strength steel has the best comprehensive surface hardness, hardening percentage and effective hardened layer depth, and the wear process is more uniform. The wear forms of ultra-highstrength steel are mainly furrows, spalling, cracks, embedded abrasive particles, furrow spray and extrusion accumulation.
Key words:  ultra-high strength steel    impact abrasive wear    wear performance    impact hardening
发布日期:  2023-07-10
ZTFLH:  TB304  
基金资助: 国家自然科学基金(52071012);中央引导地方科技发展资金基础研究(YDZX2021005)
通讯作者:  *陈晓华,北京科技大学新金属材料国家重点实验室副教授。1992年本科毕业于哈尔滨工业大学,2009年获得北京科技大学博士学位。中国材料研究学会金属间化合物与非晶分会科普委员。曾以访问学者的身份留学于美国佐治亚理工学院。目前主要研究方向为纳米结构的金属材料、高熵合金、非晶合金、利用聚焦离子束进行微/纳米加工和三维重建。在SCI、EI期刊及会议发表80余篇论文,拥有专利20余项。Chenxiaohua710103@126.com;
王自东,北京科技大学材料科学与工程学院教授。1988年、1991年和1994年在哈尔滨工业大学分别获得工学学士学位、硕士学位和博士学位。长期从事金属凝固、加工成形过程中理论与工艺的研究。主要研究方向为金属控制凝固与控制成形、先进复合材料制备与加工、材料的智能化制备加工技术。发表论文300余篇,其中SCI和EI收录200多篇。主编及编委著作6部。授权中国发明专利30余项,申请PCT专利1项。获得教育部一等奖1项、材料学会科技进步一等奖1项。Wangzidong64@126.com   
作者简介:  杨明,2014年6月、2017年4月于辽宁工业大学分别获得工学学士学位和硕士学位,2022年6月获得北京科技大学工学博士学位,现为北京机科国创轻量化科学研究院有限公司工程师。目前主要从事超高强韧钢的制备与研究、精密复杂长寿命高端模具钢的制备与研究。发表SCI和EI收录论文10余篇,授权中国发明专利10余项。
引用本文:    
杨明, 陈晓华, 王自东, 王艳林, 左玲立. 合金元素Ni/Al对45Si2MnCr2Mo超高强韧钢冲击磨料磨损行为的影响[J]. 材料导报, 2023, 37(13): 22030042-8.
YANG Ming, CHEN Xiaohua, WANG Zidong, WANG Yanlin, ZUO Lingli. Effect of Alloying Elements Ni/Al on Impact Abrasive Wear Behavior of 45Si2MnCr2Mo Ultra-high Strength Steel. Materials Reports, 2023, 37(13): 22030042-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030042  或          http://www.mater-rep.com/CN/Y2023/V37/I13/22030042
1 Moghaddam E G, Karimzadeh N, Varahram N, et al. Materials Science Engineering:A, 2013, 585, 422.
2 Narayanaswamy B, Hodgson P, Beladi H. Wear, 2016, 350-351, 155.
3 Zhang D, Beeley P R, Baker A J. Wear, 1994, 173, 59.
4 Lindroos M, Valtonen K, Kemppainen A, et al. Wear, 2015, 322-323, 32.
5 Ratia V, Miettunen I, Kuokkala V T. Wear, 2013, 301, 94.
6 Zeng D, Lu L, Zhang N, et al. Wear, 2016, 358-359, 62.
7 Colaco R, Vilar R. Wear, 2005, 258, 225.
8 Ding H H, He C G, Ma L, et al. Wear, 2016, 352-353, 1.
9 Chen H H. Application manual of wear resistant materials, Machinery Industry Press, China, 2012, pp. 10 (in Chinese).
陈华辉. 耐磨材料应用手册, 机械工业出版社, 2012, pp. 10.
10 Zhao S M. Preparation and wear properties of composites fabricated from surfaces reinforced with ceramic particles on high chromium cast iron basis. Master's Thesis, Central South University, China, 2012 (in Chinese).
赵散梅. 陶瓷颗粒增强高铬铸铁基表层复合材料的制备与磨损性能研究. 硕士学位论文, 中南大学, 2012.
11 Li W. China Foundry, 2003, 55(11), 1105 (in Chinese).
李卫. 铸造, 2003, 55(11), 1105.
12 Haiko O, Valtonen K, Kaijalainen A, et al. Wear, 2019, 440-441, 203098.
13 Haiko O, Miettunen I, Porter D, et al. Tribologia:Finnish Journal of Tribology, 2017, 35(1-2), 5.
14 Darvishi A, Daneshmayeh A, Salehi A, et al. Metallurgical and Materials Engineering, 2021, 27(4), 541.
15 Wang R J, Wang W, Song R B, et al. Materials Reports, 2016, 30(2), 7 (in Chinese).
王汝杰, 王威, 宋仁伯, 等. 材料导报, 2016, 30(2), 7.
16 El-Koussy R, El-Raghy S M, El-Mehairy A E. Tribology International, 1981, 14(6), 323.
17 Shukyurov R I, Mamedov Z G, Kagramanov I K. Metal Science and Heat Treatment, 1989, 31(3), 203.
18 Cheng J Q, Wang X W, Gao X M. Coal Mine Machinery, 2004(11), 75 (in Chinese).
程巨强, 王先武, 高兴明. 煤矿机械, 2004(11), 75.
19 Leiro A, Vuorinen E, Sundin K G, et al. Wear, 2013, 298-299, 42.
20 Narayanaswamy B, Hodgson P, Timokhina I, et al. Metallurgical & Materials Transactions A, 2016, 47(10), 1.
21 Zhou H L, Ding H, Sun Y F. Foundry Technology, 2014, 35(9), 2 (in Chinese).
周慧琳, 丁海, 孙玉福. 铸造技术, 2014, 35(9), 2.
22 Han C F, Lu W K, Chen T C, et al. Foundry Technology, 2018, 39(8), 4 (in Chinese).
韩成府, 路王珂, 陈天聪, 等. 铸造技术, 2018, 39(8), 4.
23 Yang M, Chen X H, Wang Z D, et al. Materials Research Express, 2022, 9(2), 026509.
24 Shi R J, Ma Y, Wang Z D, et al. Acta Materialia, 2020, 200, 686.
25 Gregory N W. Journal of the American Chemical Society, 1957, 79, 87.
26 Dyson D J, Holmes B. Journal of the Iron and Steel Institute, 1970, 208, 469.
27 Kang J, Zhang F C, Yang W X, et al. Materials Science and Enginee-ring:A, 2017, 686, 150.
28 Pei Z Z. Heat treatment process and wear resistance mechanism of bainitic and martensitic wear resistance cast steel for cone crusher liner. Ph. D. Thesis, University of Science and Technology Beijing, China, 2020 (in Chinese).
裴中正. 圆锥破碎机衬板用贝-马复相耐磨铸钢热处理工艺及耐磨机理研究. 博士学位论文, 北京科技大学, 2020.
29 Peng S G, Song R B, Sun T, et al. Wear, 2016, 362-363, 129.
30 Lu Z, Zhou Y, Rao Q, et al. Journal of Materials Processing Technology, 2001, 116, 176.
31 Feng Y F. Strengthening mechanism and impact wear behavior of aging hardening light-weight ultra-high manganese steel. Ph. D. Thesis, University of Science and Technology Beijing, China, 2020 (in Chinese).
冯一帆. 时效硬化型轻质超高锰钢的强化机理及冲击磨损行为研究. 博士学位论文, 北京科技大学, 2020.
32 Lu J, Hao Y, Kang P, et al. Wear, 2018, 414-415, 21.
33 Moghaddam P V, Rinaudo M, Hardell J, et al. Wear, 2020, 460-461, 203484.
34 Wang C Y, Li X D, Chang Y, et al. Wear, 2016, 362-363, 121.
35 Oskari H, Somani M, Porter D, et al. Wear, 2018, 400-401, 21.
[1] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[2] 惠阳, 刘贵民, 杜建华, 张宝生. 基于第三体的制动材料摩擦磨损行为研究进展[J]. 材料导报, 2021, 35(19): 19153-19160.
[3] 李志华, 肖平安, 李晨坤, 刘洋, 宋建勇, 陈超. 粗晶TM52钢结硬质合金的冲击磨料磨损性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 39-44.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed