Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19153-19160    https://doi.org/10.11896/cldb.20080194
  金属与金属基复合材料 |
基于第三体的制动材料摩擦磨损行为研究进展
惠阳1, 刘贵民1, 杜建华2, 张宝生3
1 陆军装甲兵学院装备保障与再制造系,北京 100072
2 中国北方车辆研究所,北京 100072
3 陆军装甲兵学院演训中心,北京 100072
Research Progress on Friction and Wear Behavior of Brake Materials Based on the Third Body
HUI Yang1, LIU Guimin1, DU Jianhua2, ZHANG Baosheng3
1 Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China
2 China North Vehicle Research Institute, Beijing 100072, China
3 Exercise and Training Center, Academy of Army Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 3662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 制动系统是交通运输和工业设备的重要组成部分,在高速、高载、高温的摩擦工况下,接触表面会因剧烈磨损而产生磨屑,并在复杂的摩擦化学反应下形成厚度为几微米至几十微米的摩擦膜,其被称为“第三体”。制动时,第三体经历了塑性变形、氧化、粘附、分层等变化,对制动材料的摩擦磨损性能产生重要影响,即制动材料的摩擦磨损性能取决于第三体的性质。因此,掌握第三体的组织结构、形成及演变机制有利于对制动材料摩擦磨损性能及机理的深入研究,从而为新型制动材料的研制提供依据。
第三体的早期研究主要集中在采用SEM、EDX、TEM等手段分析其组成、形成与运动机制方面,并取得了较为丰富的成果。随着表征方式的发展,研究人员开始尝试从应力、纳米结构、化学键等更为微观、本质的角度阐述第三体的运动、演化和作用机制,进一步将第三体与摩擦条件及磨损机理相关联。第三体对材料摩擦磨损性能影响的研究,已由传统的摩擦系数、磨损率逐步扩展到选择性转移、界面化学反应、摩擦功率损耗等方面。
但上述研究大多采用非原位法,只能间接获取摩擦表面信息,存在局限性和滞后性。为分析第三体的动态特性,近些年开发了外源第三体实验法和基于第三体的建模仿真,对澄清第三体中各组元作用、探索第三体微观演化规律具有重要意义,特别是以离散元法(DEM)、可移动元胞自动机法(MCA)为代表的非连续介质模拟,可针对第三体的位移变化、力学性能变化及受力状况进行大规模仿真。
本文归纳了第三体组成、形成和运动机制,阐述了第三体对制动材料摩擦磨损性能的影响,总结了外源第三体实验法和第三体建模仿真方面的研究进展,重点对可移动元胞自动机法进行了介绍,最后结合当前第三体研究中出现的问题提出了改进方向,并对未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
惠阳
刘贵民
杜建华
张宝生
关键词:  制动  第三体  摩擦磨损行为  外源第三体  建模仿真    
Abstract: The braking system is an important part of transportation and industrial equipment. Under the friction conditions of high speed, high load and high temperature, the contact surface will produce debris due to severe wear, and form a friction film of several microns to dozens of microns under the complex friction chemical reaction, which is called the “third body”. During braking, the third body undergoes plastic deformation, oxidation, adhesion, delamination and other changes, which have an important impact on the friction and wear performance of the brake material, that is, the friction and wear performance of the brake material depends on the nature of the third body. Therefore, mastering the orga-nization structure, formation and evolution mechanism of the third body is beneficial to the in-depth study of the friction and wear performance and mechanism of brake materials, and provides a basis for the development of new brake materials.
The early research of the third body mainly focused on the analysis of its composition, formation and movement mechanism by means of SEM, EDX, TEM, etc., and achieved relatively rich results. With the development of characterization methods, researchers begin to try to explain the movement, evolution and mechanism of the third body from a more microscopic and essential perspective such as stress, nanostructure, and chemical bonds, and further correlate the third body with friction conditions and wear mechanisms. The study of the influence of the third body on the friction and wear properties of materials has gradually expanded from traditional friction coefficients and wear rates to selective transfer, interface chemical reactions, and friction power loss.
However, most of the above-mentioned studies adopt the ex-situ method, which can only obtain the friction surface information indirectly, so it has limitations and hysteresis. In order to analyze the dynamic characteristics of the third body, the external third body experiment method and the modeling simulation based on the third body have been developed in recent years. It is of great significance to clarify the role of each component in the third body and explore the micro-evolution law of the third body, especially the discontinuous medium simulation represented by the discrete element method(DEM) and movable cellular automata(MCA). Large-scale simulations are carried out for the third body's displacement changes, mechanical performance changes and force conditions.
This article summarizes the third body composition, formation and movement mechanism. The influence of the third body on the friction and wear performance of brake materials is described. The research progress of the exogenous third-body experimental method and the third-body modeling and simulation are summarized, and the mobile cellular automata method is mainly introduced. Finally, combined with the current problems in the third-body research, the improvement direction is proposed, and the future development trend is prospected.
Key words:  brake    the third body    frictional wear behavior    exogenous third body    modeling and simulation
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TH117  
基金资助: 国防科工局基础产品创新科研项目(237099000000170008)
通讯作者:  liuguimin1971@sina.com   
作者简介:  惠阳,2017年6月毕业于陆军装甲兵学院,获得工学学士学位。现为陆军装甲兵学院装备保障与再制造系博士研究生,在刘贵民教授的指导下进行研究。目前主要研究领域为粉末冶金制动摩擦材料。
刘贵民,陆军装甲兵学院教授、博士研究生导师。1992年7月本科毕业于陆军装甲兵学院,2002年5月在波兰华沙理工大学取得博士学位。主要研究方向为:金属基复合材料、表面工程、装备失效分析。发表论文200余篇,其中SCI、EI收录40余篇,出版编、译著9部。
引用本文:    
惠阳, 刘贵民, 杜建华, 张宝生. 基于第三体的制动材料摩擦磨损行为研究进展[J]. 材料导报, 2021, 35(19): 19153-19160.
HUI Yang, LIU Guimin, DU Jianhua, ZHANG Baosheng. Research Progress on Friction and Wear Behavior of Brake Materials Based on the Third Body. Materials Reports, 2021, 35(19): 19153-19160.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080194  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19153
1 Holinski R, Hesse D. Proceedings of the Institution of Mechanical Engineers-Part D, 2003, 217(9), 765.
2 Zhang Z G, Zhang Z Y, Liang M L, et al. Journal of Chongqing University of Technology(Natural Science), 2021, 35(6), 87(in Chinese).
张志刚, 张子阳, 梁美林, 等. 重庆理工大学学报(自然科学), 2021, 35(6), 87.
3 Su L L. Study of copper, iron and graphite third body on tribological property and the action mechanism. Ph.D. Thesis, Dalian Jiaotong University, China, 2017(in Chinese).
苏琳琳. 铜、铁、石墨第三体对摩擦性能的影响及其作用机制研究. 博士学位论文, 大连交通大学, 2017.
4 Zhang S, Hao Q, Liu Y, et al. Mathematical Problems in Engineering, 2019, 38(2), 1.
5 Yao P P, Xiao Y L, Zhang Z Y, et al, Materials China, 2019, 38(2), 116(in Chinese).
姚萍屏, 肖叶龙, 张忠义, 等. 中国材料进展, 2019, 38(2), 116.
6 Liu N, Zhang B, Song J, et al. Coal Mine Machinery, 2020, 41(3), 60(in Chinese).
刘娜, 张斌, 宋娟, 等. 煤矿机械, 2020, 41(3), 60.
7 Zhu G Q, Wang W, Liu K. Chinese Journal of Applied Mechanics, 2013, 30(3), 316(in Chinese).
朱桂庆, 王伟, 刘焜. 应用力学学报, 2013, 30(3), 316.
8 Xiao X M, Yin Y, Bao J S, et al. Advances in Mechanical Engineering, 2016, 8(5), 1.
9 Peng T. Study on brake friction behavior and friction stability of brake pad material for high-speed train. Ph.D. Thesis, University of Science and Technology Beijing, China, 2019(in Chinese).
彭涛. 高铁刹车片材料制动摩擦行为及摩擦稳定性研究. 博士学位论文, 北京科技大学, 2019.
10 Su L, Gao F, Han X, et al. Tribology International, 2015, 90, 420.
11 Zhou Y, Mo J L, Cai Z B, et al. Tribology International, 2019, 140, 105882.
12 Han X M, Gao F, Fu R, et al. Materials China, 2009, 28(2), 8(in Chinese).
韩晓明,高飞,符蓉, 等. 中国材料进展, 2009, 28(2), 8.
13 Xie A L, Yin C L, Wang X F, et al. Lubrication Engineering, 2018, 43(9), 131(in Chinese).
谢奥林, 尹彩流, 王秀飞, 等. 润滑与密封, 2018, 43(9), 131.
14 Ru G T. Research on disc/pad contact friction process simulation with third body in high power brake. Master's Thesis, Dalian Jiaotong University, China, 2018(in Chinese).
汝国涛. 大功率制动器制动盘闸片第三体接触摩擦过程仿真研究. 硕士学位论文. 大连交通大学, 2020.
15 Zhang P, Zhang L, Ren S B, et al. Tribology Transactions, 2019, 52(4), 701.
16 Pei P F. Study of chromium third body on friction properties of copper-based friction material. Master's Thesis, Dalian Jiaotong University, China, 2018(in Chinese).
裴鹏飞. 铬第三体对铜基摩擦材料摩擦性能的影响. 硕士学位论文, 大连交通大学, 2018.
17 Liu H L, Gao F, Fu R, et al. Hot Working Technology, 2011, 40(18), 27(in Chinese).
刘骅利, 高飞, 符蓉, 等. 热加工工艺, 2011, 40(18), 27.
18 Su L, Gao F, Han X, et al. Tribology Letters, 2015, 60(2), 30.
19 Dmitriev A I, Österle W, Kloß H, et al. Estonian Journal of Enginee-ring, 2012, 18(3), 270.
20 Godino L, Pombo I, Girardot J, et al. Journal of Materials Processing Technology, 2019, 277, 116464.
21 Chromik R R, Zhang Y Y. Current Opinion in Solid State and Materials Science, 2018, 22, 142.
22 Stoyanov P, Shockley J M, Dienwiebel M, et al. MRS Communications, 2016, 6(3), 301.
23 Chromik R R, Strauss H W, Scharf T W. JOM, 2012, 64(1), 35.
24 Sliney H E. Tribology Transactions, 1976, 21(2), 109.
25 Descartes S, Berthier Y. Wear, 2010, 252(7-8), 546.
26 Wahl K J, Sawyer W G. MRS Bulletin, 2008, 33(12), 1159.
27 Korres S, Dienwiebel M. Review of Scientific Instruments, 2010, 81(6), 063904.
28 Godet M. Wear, 1990, 136(1), 29.
29 Godet M. Wear, 1984, 100(1-3), 437.
30 Berthier Y. Wear-materials, mechanisms and practice, John Wiley & Sons Ltd, America, 2005.
31 Xu R Z, Huang G W. Modern friction material, Metallurgical Industry Press, China, 1983(in Chinese).
徐润泽,黄国伟. 现代摩擦材料, 冶金工业出版社, 1983.
32 Eriksson M, Jacobson S. Tribology International, 2000, 33(12), 817.
33 Li X Y, Tandon K N. Wear, 1999, 225-229(1), 640.
34 Cristol-Bulthé A L, Desplanques Y, Degallaix G. Wear, 2007, 263(7), 1230.
35 Sterle W, Drfel I, Prietzel C, et al. Wear, 2009, 267(5-8), 781.
36 Filip P, Weiss Z, Rafaja D. Wear, 2002, 252(3-4), 189.
37 Österle W, Shuai P. Foreign Locomotive & Rolling Stock Technology, 2003, 19(4), 19(in Chinese).
Österle W, 帅平. 国外机车车辆工艺, 2003, 19(4), 19.
38 Che J M. Lubrication Engineering, 2004(2), 1(in Chinese).
车建明. 润滑与密封, 2004(2), 1.
39 Martin J M, Grossiord C, Mogne T L, et al. Wear,2000,245(1-2),107.
40 Fan Y L, Lv Y F. Lubrication Engineering,2007,32(6),125(in Chinese).
凡艳丽, 吕亚非. 润滑与密封, 2007, 32(6), 125.
41 Neis P D, Ferreira N F, Fekete G, et al. Tribology International, 2017, 105, 135.
42 Jiang J, Stott F H, Stack M M. Wear, 1995, 181-183, 20.
43 Chandra V P, Menapace L, Bonfanti A, et al. Wear, 2015, 322-323, 251.
44 Li H, Yin Z, Jiang D, et al. Wear, 2016, 328-329, 17.
45 Dmitriev A I, Österle W. Tribology International, 2010, 43(4), 719.
46 Österle W, Urban I. Wear, 2004, 257(1-2), 215.
47 Zhao Y, Zhou L, Zhang T, et al. Journal of Chongqing University of Technology(Natural Science), 2019, 33(3), 155(in Chinese).
赵洋, 周林, 张涛, 等, 重庆理工大学学报(自然科学), 2019, 33(3), 155.
48 Von L J, Pastewka L, Gumbsch P, et al. Tribology Letters, 2016, 63(2), 1.
49 Rhee S K, Jacko M G, Tsang P H S. Wear, 1991, 146(1), 89.
50 Han X M, Fu R, Gao F, et al. The Chinese Journal of Nonferrous Metals, 2009, 19(10), 1848(in Chinese).
韩晓明, 符蓉, 高飞, 等. 中国有色金属学报, 2009, 19(10), 1848.
51 Mou C, Fu R. Science Technology and Engineering, 2010,10(15), 3711(in Chinese).
牟超, 符蓉. 科学技术与工程, 2010, 10(15), 3711.
52 Verma P C, Ciudin R, Bonfanti A, et al. Wear, 2016, 346-347, 56.
53 Starczewski L, Szumniak J. Surface and Coatings Technology, 1998, 100, 33.
54 Minatchy G, Thomas P, Bilas P, et al. Tribology Letters, 2014, 56(3), 443.
55 Harris K L, Curry J F, Pitenis A A, et al. Tribology Letters, 2015, 60(2), 2.
56 Liu L, Sheng Y, Liu M, et al. Tribology International, 2019, 140, 105727.
57 Österle W, Dmitriev A I, Gradt T, et al. Tribology International, 2015, 88, 126.
58 Faccoli M, Provezza L, Petrogalli C, et al. Wear, 2019, 428-429, 64.
58 Österle W, Urban L. Tribology International, 2006, 39(5), 401.
59 Fu R, Gao F, Song B Y, et al. Journal of Materials Science and Engineering, 2008, 26(4), 554(in Chinese).
符蓉, 高飞, 宋宝韫,等. 材料科学与工程学报, 2008, 26(4), 554.
60 Scharf T W, Singer I L. Tribology Letters, 2003, 14(1), 3.
61 Wang H D, Wang Q Q, Liu H, et al. Hot Working Technology, 2019, 48(8), 59(in Chinese).
王鸿鼎, 王强强, 刘洪, 等. 热加工工艺, 2019, 48(8), 59.
62 Österle W, Dmitriev A I, Kloß H. Tribology International, 2012, 48, 128.
63 Wirth A, Whitaker R. Journal of Physics D Applied Physics, 1992, 25(1), 38.
64 Kennedy F E, Lu Y, Baker I, et al. Lubrication and Wear, 2017, 374-375, 63.
65 Xu G Z, Liu J J, Zhon Z R. Journal of Materials Engineering & Perfor-mance, 2002, 11(3), 288.
66 Holinski R. Industrial Lubrication and Tribology, 2001, 53(2), 61.
67 Stempflé P, Pantalé O, Djilali T, et al. Tribology International, 2010, 43(10), 1794.
68 Rodrigues A C P, Österle W, Gradt T, et al. Tribology International, 2017, 110, 103.
69 Liu H L. Effect of exogenous third body powders on the friction properties of brake pad. Master's Thesis, Dalian Jiaotong University, China, 2012(in Chinese).
刘骅利. 外源第三体对材料摩擦性能的影响. 硕士学位论文, 大连交通大学, 2012.
70 Baklouti M, Cristol A L, Desplanques Y, et al. Wear,2015,330-331,507.
71 Hsia F C, Elam F M, Bonn D,et al. Tribology International, 142, 105983.
72 Sang X H, Wang X F, Zhai P J, et al. Mechanical Engineering & Automation, 2020(1), 84(in Chinese).
桑兴华, 王小飞, 翟鹏军, 等. 机械工程与自动化, 2020(1), 84.
73 Dvorak S, Wahl K, Singer I. Tribology Letters, 2007, 28(3), 263.
74 Larbi S, Djebali S, Bilek A. Key Engineering Materials, 2013,592-593, 668.
75 Fu R, Song B W, Gao F, et al. Chinese Journal of Materials Research, 2008, 22(1), 31(in Chinese).
符蓉, 宋宝韫, 高飞,等. 材料研究学报, 2008, 22(1), 31.
76 Fu R, Song B W, Gao F, et al. Tribology, 2007, 27(4), 377(in Chinese).
符蓉, 宋宝韫, 高飞,等. 摩擦学学报, 2007, 27(4), 377.
77 Fu R, Wang J Y, Gao F, et al. Lubrication Engineering, 2014(11), 31(in Chinese).
符蓉, 王嘉阳, 高飞,等. 润滑与密封, 2014(11), 31.
78 Rodrigues A C P, Yonamine T, Albertin E, et al. Wear, 2015, 330-331, 70.
79 Schall J D, Gao G, Harrison J A. Journal of Physical Chemistry C, 2010,114(12),5321.
80 Argibay N, Chandross M, Cheng S, et al. Journal of Materials Science, 2017, 52(5), 2780.
81 Pearson J D, Zikry M A, Wahl K J. Wear, 2009, 266(9), 1003.
82 Mogonye J E, Srivastava A, Gopagoni S, et al. Tribology Letters, 2016 64(3), 37.
83 Iordanoff I, Berthier Y, Descartes S, et al. 2002, 124(4), 725.
84 Iordanoff I, Seve B, Berthier Y. Journal of Tribology, 2002, 124(3), 530.
85 Renouf M, Cao H P, Nhu V H. Tribology International,2011,44(4),417.
86 Arnaud P, Fouvry S, Garcin S. Wear, 2017, 366-367, 1475.
87 Aghababaei R. Wear, 2019, 426-427, 1076.
88 Zhang Y, Mollon G, Descartes S. Tribology International, 2020, 145, 106188.
89 Pieper C, Oschmann T, Markauskas D, et al. Chemical Engineering & Technology, 2016, 39(8), 1497.
90 Haddad H, Guessasma M, Fortin J. International Journal of Solids & Structures, 2016, 81, 203.
91 Österle W, Prietzel C, Kloß H, et al. Tribology International, 2010, 43(12), 2317.
92 Jens W. Wear, 2014, 313(1-2), 75.
93 Dmitriev A I, Nikonov A Y, Sterle W. Procedia Structural Integrity, 2016, 2, 2347.
94 Craugh L E, Kwon Y W. Composite Structures, 2013, 102, 124.
95 Jing P F, Yu S R, Song W, et al. Surface Technology, 2019, 48(11), 266(in Chinese).
景鹏飞, 俞树荣, 宋伟,等. 表面技术, 2019, 48(11), 266.
[1] 沈明学, 容康杰, 熊光耀, 朱旻昊. 第三体介质诱导轮轨间低黏着行为研究进展[J]. 材料导报, 2021, 35(13): 13160-13167.
[2] 李梦楠, 赵宇光, 谢同伦. 不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能[J]. 材料导报, 2019, 33(z1): 366-368.
[3] 袁振军, 贺甜甜, 杜三明, 张永振. 硼铁含量对铜基粉末冶金制动材料性能的影响[J]. 材料导报, 2018, 32(18): 3223-3229.
[4] 刘伯威, 徐菲, 刘咏, 杨阳, 唐兵. 钛酸钾含量对汽车摩擦材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 45-51.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed